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ELLIPTIC CURVES 1

Introduction

An elliptic curve over a field k is a nonsingular complete curve of genus 1 with a distin-
guished point. If chark �= 2, 3, it can be realized as a plane projective curve

Y 2Z = X3 + aXZ2 + bZ3, 4a3 + 27b2 �= 0,

and every such equation defines an elliptic curve over k. As we shall see, the arithmetic
theory of elliptic curves over Q (and other algebraic number fields) is a rich a beautiful
subject. Many important phenomena first become visible in the study elliptic curves, and
elliptic curves have been used solve some very famous problems that, at first sight, appear
to have nothing to do with elliptic curves. I mention three such problems.

Fast factorization of integers. There is an algorithm for factoring integers that uses
elliptic curves and is in many respects better than previous algorithms. See [K2, VI.4],
[ST,IV.4], or [C2, Chapter26]. People have been factoring integers for centuries, but recently
the topic has become of practical significance: given an integer n which is the product n = pq
of two (large) primes p and q, there is a code for which anyone who knows n can encode a
message, but only those who know p, q can decode it. The security of the code depends on
no unauthorized person being able to factor n.

Congruent numbers. A natural number n is said to be congruent if it occurs as the area
of a right triangle whose sides have rational length. If we denote the lengths of the sides by
x, y, z, then n will be congruent if and only if the equations

x2 + y2 = z2, n =
1

2
xy

have simultaneous solutions in Q. The problem was of interest to the Greeks, and was
discussed systematically by Arab scholars in the tenth century. Fibonacci showed that 5 and
6 are congruent, Fermat that 1, 2, 3, are not congruent, and Euler proved that 7 is congruent,
but the problem appeared hopeless until in 1983 Tunnell related it to elliptic curves.

Fermat’s last theorem. Recently Wiles proved that all elliptic curves over Q (with a mild
restriction) arise in a certain fashion from modular forms. It follows from his theorem, that
for an odd prime p �= 3, there does not exist an elliptic curve over Q whose equation has the
form

Y 2 = X(X + a)(X − b)
with a, b, a+ b all pth powers of integers, i.e., there does not exist a nontrivial solution in Z
to the equation

Xp + Y p = Zp;

—Fermat’s Last Theorem is proved!

The course will be an introductory survey of the subject—often proofs will only be
sketched, but I will try to give precise references for everything.

There are many excellent books on subject—see the Bibliography. Silverman [S1,S2] is
becoming the standard reference.
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1. Review of Plane Curves

Affine plane curves. Let k be a field. The affine plane over k is A2(k) = k2.

A nonconstant polynomial f ∈ k[X, Y ], assumed to have no repeated factor in kal[X, Y ],
defines a plane affine curve Cf over k whose points with coordinates in any field K ⊃ k are
the zeros of f in K2:

Cf (K) = {(x, y) ∈ K2 | F (x, y) = 0}.
The curve C is said to be irreducible if f is irreducible, and it is said be geometrically
irreducible if f remains irreducible over kal (equivalently, over any algebraically closed field
containing k).

Since k[X, Y ] is a unique factorization domain, we can write any f as above as a product
f = f1f2 · · · fr of distinct irreducible polynomials, and then

Cf = Cf1 ∪ · · · ∪ Cfr

with the Cfi irreducible curves. The Cfi are called the irreducible components of Cf .

Example 1.1. (a) Let f1(X, Y ) be an irreducible polynomial in Q[
√
2][X, Y ], no constant

multiple of which lies Q[X, Y ], and let f̄1(X, Y ) be its conjugate over Q (i.e., replace each√
2 with −√

2). Then f(X, Y ) =df f1(X, Y )f̄1(X, Y ) lies in Q[X, Y ] because it is fixed by

the Galois group of Q[
√
2]/Q. The curve Cf is irreducible but not geometrically irreducible.

(b) Let k be a field of characteristic p. Assume k is not perfect, so that there exists an
a ∈ k, a /∈ kp. Consider

f(X, Y ) = Xp + aY p.

Then f is irreducible in k[X, Y ], but in kal[X, Y ] it equals (X+αY )p where αp = a (remember,
the binomial theorem takes on a specially simple form for pth powers in characteristic p).
Thus f does not define a curve.

We define the partial derivatives of a polynomial by the obvious formulas.

Let P = (a, b) ∈ Cf (K), some K ⊃ k. If at least one of the partial derivatives ∂f
∂X

, ∂f
∂Y

is
nonzero at P , then P is said to be nonsingular, and the tangent line to C at P is(

∂f

∂X

)
P

(X − a) +
(
∂f

∂Y

)
P

(Y − b) = 0.

A curve C is said to be nonsingular if all the points in C(kal) are nonsingular. A curve or
point that is not nonsingular said to be singular.

Aside 1.2. Let f(x, y) be a real-valued function on R2. In Math 215 one learns that ∇f =df(
∂f
∂X
, ∂f
∂Y

)
is a vector field on R2 that, at any point P = (a, b) ∈ R2, points in the direction

in which f(x, y) increases most rapidly (i.e., has the most positive directional derivative).
Hence (∇f)P is normal to any level curve f(x, y) = c through P , and the line

(∇f)P · (X − a, Y − b) = 0

passes through P and is normal to the normal to the level curve. It is therefore the tangent
line.
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Example 1.3. Consider the curve

C : Y 2 = X3 + aX + b.

At a singular point of C

2Y = 0, 3X2 + a = 0, Y 2 = X3 + aX + b.

Assume char k �= 2. Hence Y = 0 and X is a common root of X3 + aX + b and its
derivative, i.e., a double root of X3+ aX + b. Thus C is nonsingular ⇐⇒ X3+ aX + b has
no multiple root (in kal) ⇐⇒ its discriminant 4a3 + 27b2 is nonzero.

Assume char k = 2. Then C always has a singular point (possibly in some extension field
of k), namely, (α, β) where α2 + a = 0 and β2 = α3 + aα+ b.

Let P = (a, b) ∈ Cf (K). We can write f as a polynomial in X − a and Y − b with
coefficients in K, say,

f(X, Y ) = f1(X − a, Y − b) + · · ·+ fn(X − a, Y − b)
where fi is homogeneous of degree i in X − a and Y − b (this the Taylor expansion of f !).
The point P is nonsingular if and only if f1 �= 0, in which case the tangent line to Cf at P
has equation f1 = 0.

Suppose that P is singular, so that

f(X, Y ) = fm(X − a, Y − b) + terms of higher degree,

where fm �= 0, m ≥ 2. Then P is said to have multiplicity m on C , denoted mP (C). If
m = 2, then P is called a double point. For simplicity, take (a, b) = (0, 0). Then (over kal)

fm(X, Y ) =
∏
Lrii

where each Li is a homogeneous polynomial ciX + diY of degree one with coefficients in kal.
The lines Li = 0 are called the tangent lines to Cf at P , and ri is called multiplicity of Li.
The point P is said to be an ordinary singularity if the tangent lines are all distinct, i.e.,
ri = 1 for all i. An ordinary double point is called a node.

Example 1.4. The curve Y 2 = X3 + aX2 has a singularity at (0, 0). If a �= 0, it is a node,
and the tangent lines at (0, 0) are Y = ±√

aX. They are defined over k if and only if a is a
square in k.

If a = 0, the singularity is a cusp. (A double point P on a curve C is called a cusp if there
is only one tangent line L to C at P , and, with the notation defined below, I(P, L∩C) = 3.)

Consider two curves Cf and Cg in A2(k), and let P ∈ Cf (K) ∩ Cg(K), some K ⊃ k.
Assume that P is an isolated point of Cf ∩ Cg, i.e., Cf and Cg do not have a common
irreducible component passing through P . We define the intersection number of Cf and Cg
at P to be

I(P,Cf ∩ Cg) = dimKK[X, Y ](X−a,Y−b)/(f, g)
(dimension as K-vector spaces).

Remark 1.5. If Cf and Cg have no common component, then∑
P∈C(kal)∩C(kal)

I(P,Cf ∩ Cg) = dimkal k[X, Y ]/(f, g).

This is particularly useful when Cf and Cg intersect at a single point.



4 J.S. MILNE

Example 1.6. Let C be the curve Y 2 = X3, and let L : Y = 0 be its tangent line at
P = (0, 0). Then

I(P, L ∩ C) = dimk k[X, Y ]/(Y, Y
2 −X3) = dimk k[X]/(X

3) = 3.

Remark 1.7. (a) The intersection number doesn’t depend on which field K the coordinates
of P are considered to lie in.

(b) As expected, I(P,C∩D) = 1 if and only if P is nonsingular on both C and D, and the
tangent lines to C and D at P are distinct. More generally, I(P,C ∩D) ≥ mP (C) ·mP (D),
with equality if and only if C and D have no tangent line in common at P .

Projective plane curves. The projective plane over k is

P2(k) = {(x, y, z) ∈ k3 | (x, y, z) �= (0, 0, 0)}/ ∼
where (x, y, z) ∼ (x′, y′, z′) if and only if there exists a c �= 0 such that (x′, y′, z′) = (cx, cy, cz).
We write (x : y : z) for the equivalence class1 of (x, y, z). Let P ∈ P2(k); the triples (x, y, z)
representing P lie on a single line L(P ) through the origin in k3, and P �→ L(P ) is a bijection
from P2(k) to the set of all such lines.

Projective n-space Pn(k) can be defined similarly for any n ≥ 0.

Let U0 = {(x : y : z} | z �= 0}, and let L∞(k) = {(x : y : z) | z = 0}. Then
(x, y) �→ (x : y : 1) : A2(k) → U0

is a bijection, and

(x : y) �→ (x : y : 0) : P1(k) → L∞(k)

is a bijection. Moreover, P2(k) is the disjoint union

P2(k) = U0 � L∞(k)

of the “affine plane” U0 with the “line at infinity” L∞. A line

aX + bY + cZ = 0

meets L∞ at the point (−b : a : 0) = (1 : −a
b
, 0). Thus we can think of P2(k) as being the

affine plane with exactly one point added for each family of parallel lines.

A nonconstant homogeneous polynomial F ∈ k[X, Y, Z], assumed to have no repeated
factor in kal, defines a projective plane curve CF over k whose points in any field K ⊃ k are
the zeros of F in P2(K):

CF (K) = {(x : y : z) | F (x, y, z) = 0}.
Note that, because F is homogeneous,

F (cx, cy, cz) = cdegFF (x, y, z),

and so, although it doesn’t make sense to speak of the value of F at a point of P2, it does
make sense to say whether or not F is zero at P . Again, the degree of F is called the
degree of the curve C , and a plane projective curve is (uniquely) a union of irreducible plane
projective curves.

The curve

Y 2Z = X3 + aXZ2 + bZ3

1The colon is meant to suggest that only the ratios matter.
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intersects the line at infinity at the point (0 : 1 : 0), i.e., at the same point as all the vertical
lines do. This is plausible geometrically, because, as you go out the affine curve

Y 2 = X3 + aX + b

with increasing x and y, the slope of the tangent line tends to ∞.

Let U1 = {(x : y : z} | y �= 0}, and let U2 = {(x : y : z)|x �= 0}. Then U1 and U2 are again,
in a natural way, affine planes; for example, we can identify U1 with A2(k) via

(x : 1 : z) ↔ (x, z).

Since at least one of x, y, or z is nonzero,

P2(k) = U0 ∪ U1 ∪ U2.
A plane projective curve C = CF is the union of three curves,

C = C0 ∪ C1 ∪ C2, Ci = C ∩ Ui.
When we identify each Ui with A2(k) in the natural way, then C0, C1, and C2 become
identified with the affine curves defined by the polynomials F (X, Y, 1), F (X, 1, Z), and
F (1, Y, Z) respectively.

The curve

C : Y 2Z = X3 + aXZ2 + bZ3

is unusual, in that it is covered by two (rather than 3) affine curves

C0 : Y 2 = X3 + aX + b

and

C1 : Z = X3 + aXZ2 + bZ3.

The notions of tangent line, multiplicity, etc. can be extended to projective curves by
noting that each point P of a projective curve C will lie on at least one of the affine curves
Ci.

Exercise 1.8. Let P be a point on a plane projective curve C = CF . Show that P is
singular, i.e., it is singular on the plane affine curve Ci for one (hence all) i if and only if

F (P ) = 0 =
(
∂F
∂X

)
P
=
(
∂F
∂Y

)
P
=
(
∂F
∂Z

)
P
. If P is nonsingular, show that the plane projective

line

L :

(
∂F

∂X

)
P

X +

(
∂F

∂Y

)
P

Y

(
∂F

∂Z

)
P

Z = 0

has the property that L ∩ Ui is the tangent line to the affine curve C ∩ Ui for i = 0, 1, 2.

Theorem 1.9 (Bezout). Let C and D be plane projective of degrees m and n respectively
over k, and assume that they have no irreducible component in common. Then they intersect
over kal in exactly mn points, counting multiplicities, i.e.,∑

P∈C(kal)∩D(kal)

I(P,C ∩D) = mn.

Proof. See [F] p112, or many other books.
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For example, a curve of degreem will meet the line at infinity in exactlym points, counting
multiplicities. Our favourite curve

C : Y 2Z = X3 + aXZ2 + bZ3

meets L∞ at a single point P = (0 : 1 : 0), but I(P, L∞ ∩ C) = 3. [Exercise: Prove this!] In
general, a nonsingular point P on a curve C is called a point of inflection if the intersection
multiplicity of the tangent line and C at P is ≥ 3.

Suppose k is perfect. Then all the points of C(kal)∩D(kal) will have coordinates in some
finite Galois extension K of k, and the set

C(K) ∩D(K) ⊂ P2(K)

is stable under the action of Gal(K/k).

Remark 1.10. (For the experts.) Essentially, we have defined an affine (resp. projective)
curve to be a geometrically reduced closed subscheme of A2k (resp. P2k) of dimension 1. Such
a scheme corresponds to an ideal of height one, which is principal, because polynomial rings
are unique factorization domains. The polynomial generating the ideal of the scheme is
uniquely determined by the scheme up to multiplication by a nonzero constant. The other
definitions in this section are standard.

References: The best reference for what little we need from algebraic geometry is [F].

2. Rational Points on Plane Curves.

Let C be a plane projective curve over Q (or some other field with an interesting arith-
metic), defined by a homogeneous polynomial F (X, Y, Z). The two fundamental questions
in diophantine geometry then are:

Question 2.1. (a) Does C have a point in Q, that is, does F (X, Y, Z) have a nontrivial zero
in Q?

(b) If the answer to (a) is yes, can we describe the set of common zeros?

There is also the question of whether there is an algorithm to answer these questions.
For example, we may know that a curve has only finitely many points without having an
algorithm to actually find the points.

For simplicity, in the remainder of this section, I’ll assume that C is absolutely irreducible,
i.e., that F (X, Y, Z) is irreducible over Qal.

Here is one observation that we shall use frequently. Let K be a finite (of even infinite)
Galois extension of Q, and let

f(X, Y ) =
∑
aijX

iY j ∈ Q[X, Y ].

If (a, b) ∈ K2 is a zero of f(X, Y ), then so also is (σa, σb) for any σ ∈ Gal(K/Q), because

0 = σf(a, b) = σ(
∑
aija

ibj) =
∑
aij(σa)

i(σb)j = f(σa, σb).

Thus Gal(K/Q) acts on C(K), where C is the affine curve defined by f(X, Y ). More
generally, if C1, C2, . . . are affine curves over Q, then Gal(K/Q) stabilizes the set C1(K) ∩
C2(K) · · · . On applying this remark to the curves f(X, Y ) = 0, ∂f

∂X
(X, Y ) = 0, ∂f

∂Y
(X, Y ) = 0,

we see that Gal(K/Q) stabilizes the set of singular points in C(K). Similar remarks apply
to projective curves.
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Curves of degree one. First consider a curve of degree one, i.e., a line,

C : aX + bY + cZ = 0, a, b, c in Q and not all zero.

It always has points, and it is possible to parameterize the points: if, for example, c �= 0, the
map

(s : t) �→ (s : t : −a
c
s− b

c
t)

is a bijection from P1(k) onto C(k).

Curves of degree two. In this case F (X, Y, Z) is a quadratic form in 3 variables, and C is a
conic. Note that C can’t be singular: if P has multiplicity m, then (according to (1.7b)) a
line L through P and a second point Q on the curve will have

I(P, L ∩ C) + I(Q,L∩ C) ≥ 2 + 1 = 3,

which violates Bezout’s theorem.

Sometimes it is easy to see that C(Q) = ∅. For example,

X2 + Y 2 + Z2

has no nontrivial zero because it has no nontrivial real zero. Similarly,

X2 + Y 2 − 3Z2

has no nontrivial zero, because if it did it would have a zero (x, y, z) with x, y, z ∈ Z and
gcd(x, y, z) = 1. The only squares in Z/3Z are 0 and 1, and so

x2 + y2 ≡ 0 mod 3

implies that x ≡ 0 ≡ y mod 3. But then 3 must divide z, which contradicts our assumption
that gcd(x, y, z) = 1. This argument shows, in fact, that X2 + Y 2 − 3Z2 does not have a
nontrivial zero in the field Q3 of 3-adic numbers.

These examples illustrate the usefulness of the following statement: a necessary condition
for C to have a point with coordinates in Q is that it have a point with coordinates in R
and in Qp for all p. A theorem of Legendre says that the condition is also sufficient:

Theorem 2.2 (Legendre). A quadratic form F (X, Y, Z) with coefficients in Q has a non-
trivial zero in Q if and only if it has a nontrivial zero in R and in Qp for all p.

Remark 2.3. (a) This is not quite how Legendre (1752–1833) stated it, since p-adic numbers
are less than 100 years old

(b) The theorem does in fact give a practical algorithm for showing that a quadratic form
does have a nontrivial rational zero—see (2.11) below.

(c) The theorem is true for quadratic forms F (X0, X2, . . . , Xn) in any number of variables
over any number field K (Hasse-Minkowski theorem). There is a very down-to-earth proof
of the original case of the theorem in [C2]—it takes three lectures. A good exposition of
the proof for forms over Q in any number of variables is to be found in Serre, Course on
Arithmetic. The key cases are 3 and 4 variables (2 is trivial, and for ≥ 5 variables, one uses
induction on n), and the key result needed for its proof is the quadratic reciprocity law.
For number fields K other Q, the proof requires the Hilbert reciprocity law, which is best
derived as part of class field theory (see Math 776 for class field theory), but there is a more
direct proof of Hilbert’s reciprocity law in Chapter 7 of O’Meara, Introduction to Quadratic
Forms (which proves the Hasse-Minkowski theorem in full generality).
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(d) If for a class of polynomials (better algebraic varieties), it is known that each polyno-
mial (or variety) has a zero in Q if and only if it has zeros in R and all Qp, then one says
that the Hasse, or local-global, principle holds for the class.

Now suppose C has a point P0 with coordinates in Q. Can we describe all the points? Yes,
because each line through P0 will (by Bezout’s theorem, or more elementary arguments) meet
the curve in exactly one other point, except for the tangent line. Since the lines through P0
in P2 form a “P1”, we obtain in this way a bijection between C(Q) and P1(Q). For example,
take P0 to be the point (−1 : 0 : 1) on the curve C : X2+ Y 2 = Z2. The line bX − aY + bZ,
a, b ∈ Q, of slope b

a
through P0 meets C at the point (a2− b2 : 2ab : a2+ b2). In this way, we

obtain a parametrization (a : b) �→ (a2−b2 : 2ab : a2+b2) of the points of C with coordinates
in Q.

Curves of degree 3. Let C : F (X, Y, Z) = 0 be a plane projective curve over Q of degree
3. If it has a singular point, then Bezout’s theorem shows that it has only one, and that
it is a double point. A priori the singular point P0 may have coordinates in some finite2

extension K of Q, which we may take to be Galois over Q, but Gal(K/Q) stabilizes the set
of singular points in C(K), hence fixes P0, and so P0 ∈ C(Q). Now a line through P0 will
meet the curve in exactly one other point (unless it is a tangent line), and so we again get
a parametrization of the points (with finitely many exceptions).

Nonsingular cubics will be the topic of the rest of the course. We shall see that the Hasse
principle fails for nonsingular cubic curves. For example,

3X3 + 4Y 3 = 5Y 3

has points in R and Qp for all p, but not in Q. However, it is conjectured that the Hasse
principle fails only by a “finite amount”, and that the failure is “measured” by a certain
group, called the Tate-Shafarevich group.

Let C be a nonsingular cubic curve over Q. From two points P1, P2 ∈ C(Q) we can
construct3 a third as the point of intersection of C(Q) with the chord through P1 and P2—
by Bezout’s theorem, there exists exactly one such point, perhaps with coordinates in a
Galois extension K of Q, but by the observation at the start of this section, it must be fixed
by Gal(K/Q) and therefore lie in C(Q). Similarly, the tangent line at a point P ∈ C(Q) will
meet C at exactly one other point (unless P is a point of inflection), which4 will lie in C(Q).

In a famous paper, published in 1922/23, Mordell proved the following theorem:

Theorem 2.4 (Finite basis theorem). Let C be a nonsingular cubic curve over Q. Then
there exists a finite set of points on C with coordinates in Q from which every other such
point can be obtained by successive chord and tangent constructions.

2I should explain why the singular point has coordinates in a finite extension of Q. I claim that if
F (X, Y, Z) has a singular point with coordinates in some big field Ω, e.g., C, then it has a singular point
with coordinates in Qal (hence in a finite extension of Q). Pass to an affine piece of the curve, and consider
a (nonhomogeneous) cubic f(X, Y ). If the curve f(X, Y ) = 0 has a singular point with coordinates in Ω,
then f, ∂f

∂X
, ∂f

∂Y
have a common zero in Ω2, and so the ideal they generate is not the whole of Ω[X, Y ]. This

implies that the ideal they generate in Qal[X, Y ] is not the whole ring, and the Hilbert Nullstellensatz then
implies that they have a common zero in (Qal)2.

3This construction goes back to Diophantus (3rd century A.D)
4This observation was first made by Newton (1642–1727).
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In fact, C(Q), if nonempty, can be made into an abelian group, and the finite basis theorem
says that C(Q) is finitely generated. There is as yet no proven algorithm for finding the rank
of the group.

Curves of genus > 1. Mordell conjectured, in his 1922/23 paper, and Faltings proved, that
a nonsingular plane projective curve of degree ≥ 4 has only finitely many points coordinates
in Q.

More generally, define the geometric genus of a plane projective curve C to be

pg(C) =
(d− 1)(d − 2)

2
−∑

δP

where d is the degree of C , the sum is over the singular points in C(Qal), and δP = mP (mP−1)
2

if P is an ordinary singularity of multiplicity mP . Then C(Q) is finite if C has geometric
genus > 1.

Remark 2.5. (a) Let P ∈ P2(Q). Choose a representative (a : b : c) for P with a, b, c
integers having no common factor, and define the height h(P ) of P to be max(|a|, |b|, |c|).
The biggest remaining problem in the theory of curves of genus > 1 over Q is that of giving
an upper bound H(C), in terms of the polynomial defining C , for the heights of the points
P ∈ C(Q). With such an upper bound H(C), one could find all the points on C with
coordinates in Q by a finite search.

(b) There is a heuristic explanation for Mordell’s conjecture. Let C be a curve of genus
g ≥ 1 over Q, and assume that C(Q) �= ∅. It is possible to embed C into another projective
variety J of dimension g (its Jacobian variety). The Jacobian variety J is an abelian variety,
i.e., it has a group structure, and a generalization of Mordell’s theorem (due to Weil) says that
J(Q) is finitely generated. Hence, inside the g-dimensional set J(C) we have the countable
set J(Q) and the (apparently unrelated) one-dimensional set C(C). If g > 1, it would be
an extraordinary accident if the second set contained more than a finite number of elements
from the first set.

Hensel’s lemma.

Lemma 2.6. Let f(X1, . . . , Xn) ∈ Z[X1, . . . , Xn], and let a ∈ Zn have the property that,
for some m ≥ 0,

f(a) ≡ 0 mod p2m+1

but, for some i, (
∂f

∂Xi

)
(a) �≡ 0 mod pm+1.

Then there exists a b ∈ Zn such that

b ≡ a mod pm+1 ( =⇒
(
∂f

∂Xi

)
(b) �≡ 0 mod pm+1)

and
f(b) ≡ 0 mod p2m+2.

Proof. Consider the (trivial) Taylor expansion

f(X1, . . . , Xn) = f(a1, . . . , an) +
n∑
i=1

(
∂f

∂Xi

)
a

(Xi − ai) + terms of higher degree.
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Set bi = ai + hip
m+1, hi ∈ Z. Then

f(b1, . . . , bn) = f(a1, . . . , an) +
∑(

∂f

∂Xi

)
a

hip
m+1 + terms divisible by p2m+2.

We have to choose the hi so that

f(a1, . . . , an) +
∑(

∂f

∂Xi

)
a

hip
m+1

is divisible by p2m+2. From the assumption, we know that there is a k ≤ m such that pk

divides
(
∂f
∂Xi

)
a
for all i but pk+1 doesn’t divide all of them. Any hi’s satisfying the following

equation will suffice:

f(a1, . . . , an)

pk+m+1
+
∑ (

∂f
∂Xi

)
a

pk
hi ≡ 0 mod p.

Remark 2.7. If, in the lemma, a satisfies the condition

f(a) ≡ 0 mod p2m+r

for some r ≥ 1, then the construction in the proof gives a b such that

b ≡ a mod pm+r

and

f(b) ≡ 0 mod p2m+r+1.

Theorem 2.8 (Hensel’s Lemma). Under the hypotheses of the lemma, there exists a b ∈
Zn
p such that f(b) = 0 and b ≡ a mod pm+1.

Proof. On applying the lemma, we obtain an a2m+2 ∈ Zn such that a2m+2 ≡ a mod pm+1

and f(a2m+2) ≡ 0 mod p2m+2. On applying the remark following the lemma, we obtain an
a2m+3 ∈ Zn such that a2m+3 ≡ a2m+2 mod pm+2 and f(a2m+3) ≡ 0 mod p2m+3. Continuing
in this fashion, we obtain a sequence a, a2m+2, a2m+3, . . . of n-tuples of Cauchy sequences.
Let b be the limit in Zn

p . The map f : Zn → Z is continuous for the p-adic topologies, and so

f(b) = f(lim
r
a2m+r) = lim

r
f(a2m+r) = 0.

Example 2.9. Let f(X) ∈ Z[X], and let f(X) ∈ Fp[X] be its reduction mod p. Here

Fp = Z/pZ. Let a ∈ Z be such that a ∈ Fp is a simple root of f(X). Then df
dX

(a) �= 0, and
so the theorem shows that a lifts to a root of f(X) in Zp.

Example 2.10. Let f(X, Y, Z) be a homogeneous polynomial in Z[X, Y, Z], and let
(a, b, c) ∈ Z3 be such that (a, b, c) ∈ F3p is a nonsingular point of the curve C : f (X, Y, Z) = 0

over Fp. Then, as in the previous example, (a, b, c) lifts to a point on the curve C :
f(X, Y, Z) = 0 with coordinates in Zp.
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Example 2.11. Let f(X, Y, Z) be a quadratic form with coefficients in Z, and let D �= 0
be its discriminant. If p does not divide D, then f(X, Y, Z) is a nondegenerate quadratic
form over Fp, and it is known that it has a nontrivial zero in Fp. Therefore f(X, Y, Z)
has a nontrivial zero in Qp for all such p. If p divides D, then Hensel’s lemma shows that
f(X, Y, Z) will have a nontrivial zero in Qp if and only if it has an “approximate” zero.

A brief introduction to the p-adic numbers. Let p be a prime number. Any nonzero
rational number a can be expressed a = pr m

n
with m,n ∈ Z and not divisible by p. We then

write ordp(a) = r, and |a|p = 1
pr . We define |0|p = 0. Then:

(a) |a|p = 0 if and only if a = 0.
(b) |ab|p = |a|p|b|p.
(c) |a+ b|p ≤ max{|a|p, |b|p} (≤ |a|p + |bp|).

These conditions imply that
dp(a, b) =df |a− b|p

is a translation-invariant metric on Q. Note that, according to this definition, to say that a
and b are close means that their difference is divisible by a high power of p. The field Qp of
p-adic numbers is the completion of Q for this metric. We now explain what this means.

A sequence (an) is said to be a Cauchy sequence (for the p-adic metric) if, for any ε > 0,
there exists an integer N(ε) such that

|am − an|p < ε whenever m,n > N(ε).

The sequence (an) converges to a if for any ε > 0, there exists an N(ε) such that

|an − a|p < ε whenever n > N(ε).

Let R be the set of all Cauchy sequences in Q (for the p-adic metric). It becomes a ring
with the obvious operations. An element of R is said to be a null sequence if it converges to
zero. The set of null sequences is an ideal I in R, and Qp is defined to be the quotient R/I .

If α = (an)n∈N is a Cauchy sequence, then one shows that |an|p becomes constant for large
n, and we set this constant value equal to |α|p. The map α �→ |α|p : R→ Q factors through
Qp, and has the properties (a), (b), (c) listed above. We can therefore talk about Cauchy
sequences etc. in Qp.

Theorem 2.12. (a) Qp is a field, and it is complete, i.e., every Cauchy sequence in Qp has
a unique limit in Qp.

(b) The map sending a ∈ Q to the equivalence class of the constant Cauchy sequence
α(a) = a, a, a, . . . is an injective homomorphism Q ↪→ Qp, and every element of Qp is a
limit of a sequence in Q.

Remark 2.13. (a) The same construction as above, but with | · |p replaced with the usual
absolute value, yields R instead of Qp.

(b) Just as real numbers can be represented by decimals, p-adic numbers can be represented
by infinite series of the form

a−np−n + · · ·+ a0 + a1p + · · ·+ ampm + · · · 0 ≤ ai ≤ p− 1.

The ring of p-adic integers Zp can be variously defined as:

(a) the closure of Z in Qp;
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(b) the set of elements α ∈ Qp with |α|p ≤ 1;
(c) the set of elements of Qp that can be represented in the form

a0 + a1p + · · ·+ ampm + · · · 0 ≤ ai ≤ p− 1.

(d) the inverse limit lim←−Z/pmZ.

Some history. Hilbert and Hurwitz showed (in 1890) that, if a curve of genus zero has one
rational point, then it has infinitely many, all given by rational values of parameter. Poincaré
wrote a long article on the rational points on curves in 1901, and is usually credited with
introducing the group law on E(Q) and with conjecturing that E(Q) is finitely generated
(the finite basis theorem). According to Schappacher (MathReviews 92c:14001), neither is
true: although Poincaré was familiar with the use of chords and tangents to construct new
rational points from old, he did not define the group law, and he didn’t conjecture the finite
basis theorem, he simply assumed it was true. In his remarkable 1922/23 paper, Mordell
proved the finite basis theorem, and, in a rather off-handed way, conjectured that all curves
of genus > 1 over Q have only finitely many rational points (the Mordell conjecture). He did
this without realizing E(Q) is a group, which complicates his proof, since he has to prove
that E(Q)/2E(Q) is finite. The Mordell conjecture was proved by Faltings in 1983 (that
year’s “theorem of the century”). For an interesting discussion of Mordell’s famous paper,
and related history, see Cassels, Mordell’s finite basis theorem revisited, Math. Proc. Camb.
Phil. Soc. (1986), 100, 31–41.

Exercise 2.14. (a) Let

F (X, Y, Z) = 5X2 + 3Y 2 + 8Z2 + 6(Y Z + ZX +XY ).

Find (a, b, c) ∈ Z3, not all divisible by 13, such that

F (a, b, c) ≡ 0 mod 132.

(b) Consider the plane affine curve C : Y 2 = X3 + p. Prove that the point (0, 0) on the
reduced curve over Fp does not lift to Z2p. Why doesn’t this violate Hensel’s lemma?

3. The Group Law on a Cubic Curve

Let C be a nonsingular projective plane curve of degree 3 over a field k, which, for sim-
plicity, we assume to be perfect. We are especially interested in the case k = Q.

As we discussed in Section 2, Bezout’s theorem (or more elementary arguments) show
that the line through two points P and Q on C with coordinates in k will meet the curve in
exactly one other point, which will also have coordinates in k. We write PQ for this third
point. In special cases, this has to interpreted appropriately: if P = Q, then PQ is the point
of intersection of the tangent line at P with the cubic; if the line through P and Q is tangent
to the cubic at Q, then PQ = Q; and if P is a point of inflection, then PP = P .

If C(k) is empty, then it is not a group. Otherwise we choose a point O ∈ C(k), which
will be the zero element for the group, and for any pair P,Q ∈ C(k), we define

P +Q = O(PQ),

i.e., if the line through P and Q intersects C again at R, then P + Q is the third point of
intersection with C of the line through O and R.

[[Diagram omitted]]
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Theorem 3.1. The above construction makes C(k) into a commutative group.

In this section, we sketch an elementary geometric proof of this, which is very beautiful,
at least if one ignores the degenerate cases (as we shall). In the next section, we shall give
a different proof based on the Riemann-Roch theorem.

First note that the definition doesn’t depend on the order of P and Q; thus

P + Q = Q+ P.

Second note that
O + P =df O(OP ) = P.

Given P ∈ C(k), define P ′ = P (OO), i.e., if the tangent line at O intersects C at R, then
P ′ is the third point of intersection of the line through P and R. Then PP ′ = OO, and
O(PP ′) = O(OO) = O, and so

P + P ′ = O.
[[Diagram omitted]]

Thus the law of composition is commutative, has a zero element, and every element has a
negative. It remains to check that it is associative, i.e., that

(P +Q) +R = P + (Q+R).

Consider the following diagram, in which

41 = the line through P and Q;

42 = the line through Q and R;

43 = the line through O and PQ;

44 = the line through O and QR;

45 = the line through P + Q and R;

46 = the line through Q+R and P.

[[diagram omitted]]

Let
S = (P +Q)R, T = P (Q+R).

Then (P +Q) +R = OS and P + (Q+R) = OT . We shall show that S = T , which implies
that (P +Q) +R = P + (Q+R).

We first need a lemma from linear algebra.

Lemma 3.2. Let P1, . . . , P8 be 8 points in P2(k) in “general position”5. Then there exists a
ninth point P9 such that any cubic curve (not necessarily irreducible or nonsingular) passing
through P1, . . . , P8 also passes through P9.

Proof. A cubic form

F (X, Y, Z) = a1X
3 + a2X

2Y + · · ·+ a10Z3
has 10 coefficients a1, . . . , a10. The condition that F (Pi) = 0 is a linear condition on
a1, . . . , a10, namely, if Pi = (xi : yi : zi), then it is the condition

a1x
3
i + a2x

2
iyi + · · ·+ a10z3i = 0.

5This is the old geometers way of saying “and satisfying whatever additional conditions are needed to
make the proof work”.
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If the vectors (x3i , x
2
iyi, . . . , z

3
i ), i = 1, . . . , 8 are linearly independent, then the cubic forms

having the Pi as zeros form a 2-dimensional space, and so there exist two such forms F and
G such that any other such form can be written

λF + µG, λ, µ ∈ k.

Now F and G have a ninth zero in common (by Bezout), and every form λF + µG passes
through it.

Remark 3.3. In order for the proof to work, we need that the points P1, . . . , P8 impose
linearly independent conditions on the coefficients of the cubic forms. According to [C2],
this means that no 7 lie on a conic, and no 4 on a line.

We now complete the proof of the theorem. Consider the cubic curves:

C, 414445 = 0, 424346 = 0.

All three pass through the 8 marked intersection points in the above diagram, and the
last two also pass through the unmarked intersection point. Therefore, if the 8 marked
intersection points are in “general position”, then the unmarked intersection point is the 9th
point through which all cubics must pass. In particular, C passes through the unmarked
intersection point, which implies that S = T , as required.

Remark 3.4. To give a complete proof, one needs to consider the case that the 8 points are
not in general position. There is a detailed elementary proof of this along the lines of the
above proof in [Kn], pp67–74.

Alternatively, those who know a little algebraic geometry will be able to complete the
proof as follows. We have two regular maps of projective varieties

C ×C × C → C,

namely,

(P,Q,R) �→ (P +Q) +R and (P,Q,R) �→ P + (Q+R).

The above argument shows that they agree on an open subset of C × C × C , which is
nonempty because it contains (O,O,O). Because C is separated, the set where the two
maps is closed, and so is all of C × C × C .

Remark 3.5. The above construction of the group law makes it obvious that the coordinates
of P +Q can be expressed as polynomials in the coordinates of P and Q. For special cubics,
we shall find these polynomials later. Also, it is clear that we get the same P + Q whether
we consider P and Q as elements of C(k) or of C(K) for some K ⊃ k.

4. Functions on Algebraic Curves and the Riemann-Roch Theorem

Assume (initially) that k is algebraically closed.
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Regular functions on affine curves. Let C be an affine plane curve over k defined by an
irreducible polynomial f(X, Y ). A polynomial g(X, Y ) ∈ k[X, Y ] defines a function

(a, b) �→ g(a, b) : C(k) → k

and the functions arising in this manner are called the regular functions on C .

Clearly, any multiple of f(X, Y ) in k[X, Y ] defines the zero function on C , and the Hilbert’s
Nullstellensatz ([F] p21) shows that the converse is true (using that f irreducible implies
(f(X)) is a prime ideal). Therefore the map sending g to the function (a, b) �→ g(a, b) on C
defines an isomorphism

k[X, Y ]/(f(X))
≈−→ {ring of regular functions on C}.

Write

k[C ] = k[X, Y ]/(f(X)) = k[x, y].

Then x and y can be interpreted as the coordinate functions P �→ x(P ), P �→ y(P ) on C ,
and k[C ] is the ring of polynomials in x and y. Note that a nonzero regular function on C
will have only finitely many zeros on C , because a curve g(X, Y ) = 0 will intersect C in only
finitely many points unless f(X, Y )|g(X, Y ).
Because (f(X)) is irreducible, k[x, y] is an integral domain, and we let k(C) = k(x, y) be

its field of fractions. An element ϕ = g
h
∈ k(x, y) defines a function

(a, b) �→ g(a, b)

h(a, b)
: C(k) \ {zeros of h} → k.

We call ϕ a meromorphic function 6 on C , regular on C \ {zeros of h}.
Example 4.1. (a) Let C be the X-axis, i.e., the affine curve defined by the equation Y = 0.
Then k[C ] = k[X, Y ]/(Y ) = k[X] and k(C) = k(X). The meromorphic functions on C are

just the rational functions g(X)
h(X)

, and such a function is regular outside the finite set of zeros

of h(X).

(b) Let C be the curve defined by the equation

Y 2 = X3 + aX + b.

Then k[C ] = k[x, y] = k[X, Y ]/(Y 2 − X3 − aX − b). Thus the regular functions on C are
the polynomials in the coordinate functions x and y, which satisfy the relation

y2 = x3 + ax+ b.

Regular functions on projective curves. Let C be a plane projective curve over k
defined by an irreducible homogeneous polynomial F (X, Y, Z). If G(X, Y, Z) and H(X, Y, Z)
are homogeneous polynomials of the same degree and H is not a multiple of F , then

(a : b : c) �→ G(a, b, c)

H(a, b, c)

is a well-defined function on C(k) \ {zeros of H}. Such a function is called a meromorphic
function on C . More precisely, let

k[x, y, z] = k[X, Y, Z]/(F (X, Y, Z)).

6Note that this is an abuse of language since ϕ is not in fact a function on all of C(k).
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Because F is homogeneous, there is a well-defined decomposition

k[x, y, z] = ⊕dk[x, y, z]d

where k[x, y, z]d consists of the elements of k[x, y, z] having a representative in k[X, Y, Z]
that is homogeneous of degree d. Define

k(C) = k(x, y, z)0 = {g
h

∈ k(x, y, z) | ∃d such that g, h ∈ k[x, y, z]d}.
It is a subfield of k(x, y, z), and its elements are called the meromorphic functions on C . A
meromorphic defines a(n honest) function on the complement of a finite set in C(k). Let U
be the complement of a finite set in C(k); then a function ϕ : U → k is said to be regular if
there exists a meromorphic function without poles in U and agreeing with ϕ on U .

Remark 4.2. Recall that we have a bijection

A2(k) ↔ U0(k) ⊂ P2(k)
(a
c
, a
c
) ↔ (a : b : c)

To avoid confusion, write k[X ′, Y ′] for the polynomial ring associated with A2 and k[X, Y, Z]
for the polynomial ring associated with P2. A polynomial g(X ′, Y ′) defines a function
A2(k) → k, and the composite

U0 → A2
g(X ′,Y ′)−−−−−→ k

is

(a : b : c) �→ g(
a

c
,
b

c
) =

g∗(a, b, c)
cdeg g

where g∗(X, Y, Z) = g(X
Z
, Y
Z
) · Zdeg g (in other words, g∗(X, Y, Z) is g(X, Y ) made homoge-

neous by using the smallest number of Z’s). Thus g(X ′, Y ′) as a function on A2 ∼= U0 agrees
with g∗(X,Y,Z)

Zdeg g . One see easily that the map

g(X ′, Y ′)
h(X ′, Y ′)

�→ g∗(X, Y, Z)
Zdeg g

Zdeg h

h∗(X, Y, Z)
: k(X ′, Y ′) → k(X, Y, Z)

is an injection, with image the subfield k(X, Y, Z)0 of k(X, Y, Z) of elements that can be
expressed as the quotient of homogeneous polynomials of the same degree.

Now let C be an irreducible curve in P2, and assume that C ∩ U0 �= ∅, i.e., that C is not
the “line at infinity” Z = 0. Then the map

g(x′, y′)
h(x′, y′)

�→ g∗(x, y, z)
zdeg g

zdegh

h∗(x, y, z)
: k(x′, y′) → k(x, y, z)0

is a bijection from the field of meromorphic functions on the affine curve U0 ∩C to the field
of meromorphic functions on C . Moreover, if ϕ′ �→ ϕ, then ϕ(a : b : c) = ϕ′(a

c
, b
c
) for any

point (a : b : c) ∈ C(k) ∩ U0 at which ϕ is defined.

Example 4.3. (a) The meromorphic functions on P1 are the functions

(a : b) �→ G(a, b)

H(a, b)

where G(X,Z) and H(X,Z) are homogeneous polynomials of the same degree.

(b) Let C be a nonsingular projective curve over C. Then C(C) has the structure of a
compact Riemann surface, and the meromorphic functions on C(C) in the sense of complex
analysis are exactly the same functions as those defined above. For example, P1(C) is the
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Riemann sphere, and, written inhomogeneously, the meromorphic functions in both cases
are the functions g(z)

h(z)
with each of g(z) and h(z) polynomials.

It is not true that the two notions of meromorphic function coincide for an affine curve:
every meromorphic function in the above sense is also meromorphic in the sense of complex
analysis, but there are more of the latter, for example, ez.

The Riemann-Roch theorem. Let C be the nonsingular projective curve over a field k
(still assumed to be algebraically closed) defined by a polynomial F (X, Y, Z). One tries to
understand the meromorphic functions on a C in terms of their zeros and poles.

The group of divisors Div(C) on C is the free abelian group on the set C(k). Thus an
element of Div(C) is a finite sum

D =
∑
nP [P ], nP ∈ Z, P ∈ C(k).

The degree of D is
∑
nP .

There is a partial ordering on Div(C):∑
nP [P ] ≥

∑
mP [P ] ⇐⇒ nP ≥ mP for all P.

In particular,
∑
nP [P ] ≥ 0 if and only if all the np are nonnegative.

Let ϕ be a meromorphic function on C . By definition, ϕ is defined by a quotient G(X,Y,Z)
H(X,Y,Z)

of two polynomials of the same degree, say m, and F doesn’t divide H. Assume ϕ �= 0—
we may then suppose that F doesn’t divide G(X, Y, Z) (recall that k[X, Y, Z] is a unique
factorization domain). By Bezout’s theorem

(degF )m =
∑

F (P )=0=G(P )

I(P,C ∩ {G = 0}) = ∑
F (P )=0=H(P )

I(P,C ∩ {H = 0}).

Define the divisor of ϕ to be

divϕ =
∑

G(P )=0=F (P )

I(P,C ∩ {G = 0})[P ]− ∑
H(P )=0=F (P )

I(P,C ∩ {H = 0})[P ]

The [P ] occurring in divϕ with positive coefficient are called the zeros of ϕ, and those
occurring with negative coefficient are its poles. Note the divϕ has degree zero, and so ϕ has
as many zeros as poles (counting multiplicities). Also, note that only the constant functions
will have no zeros or poles.

Given a divisor D, we define

L(D) = {ϕ | divϕ+D ≥ 0} ∪ {0}.
For example, if D = [P ] + 2[Q], then L(D) consists of those meromorphic functions having
no poles outside {P,Q} and having at worst a single pole at P and a double pole at Q. Each
L(D) is a vector space over k, and in fact a finite-dimensional vector space. We denote its
dimension by 4(D).

Theorem 4.4 (Riemann-(Roch)). There exists an integer g such that for all divisors D

4(D) ≥ degD + 1− g,
with equality for degD sufficiently large (in fact, equality for degD > 2g − 2).

Proof. See [F] Chapter 8.
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The integer defined by the theorem is the genus of C .

Example 4.5. Let a1, . . . , am ∈ k = A1(k) ⊂ P1(k), and let D =
∑
ri[ai] ∈ Div(P1), ri > 0.

The meromorphic functions ϕ on A1 with their poles in {a1, . . . , am} and at worst a pole of
order ri at ai are those of the form

ϕ =
f(X)

(X − a1)r1 · · · (X − am)rm , f(X) ∈ k[X].

The function ϕ will not have a pole at ∞ if and only if deg f ≤ ∑
ri = degD. The dimension

of L(D) is therefore the dimension of the space of polynomials f of degree ≤ degD, which
is degD + 1. This is as expected, because P1 has genus 0.

The group law revisited. The divisor of a meromorphic function on C is said to be
principal. Two divisors D and D′ are said to be linearly equivalent, D ∼ D′, if they differ
by the divisor of a function.

We have groups

Div(C) ⊃ Div0(C) ⊃ P (C)
where Div0(C) is the group of divisors of degree 0 on C , and P (C) is the group of principal
divisors. Define Picard groups:

Pic(C) = Div(C)/P (C), Pic0(C) = Div0(C)/P (C).

Remark 4.6. We are interested in these groups when C is a projective curve, but the
number theorists may be interested to note that when C is a nonsingular affine curve, k[C ]
is a Dedekind domain, and Pic(C) is its ideal class group.

Consider now a nonsingular projective curve of genus 1—according to the formula on p9, a
nonsingular plane projective curve will have genus 1 if and only if it has degree 3. According
to the Riemann-Roch theorem,

4(D) = degD if degD ≥ 1.

Proposition 4.7. Let C be a nonsingular projective curve of genus 1, and let O ∈ C(k).
The map

P �→ [P ]− [O] : C(k) → Pic0(C)

is bijective.

Proof. We define an inverse. Let D be a divisor of degree 0. Then D+ [O] has degree 1, and
so there exists a meromorphic function ϕ, unique up to multiplication by a nonzero constant,
such that div(ϕ)+D+[O] ≥ 0. The only divisors ≥ 0 of degree 1 are of the form [P ]. Hence
there is a well-defined point P such that D + [O] ∼ [P ], i.e., such that D ∼ [P ]− [O].

Thus we have a canonical bijection C(k) → Pic0(C), from which C(k) inherits the struc-
ture of an abelian group. Note that this group structure is determined by the condition:
P +Q = S if and only if [P ] + [Q] ∼ [S] + [O].

I claim that this is the same structure as defined in the last section. Let P,Q ∈ C(k), and
suppose P + Q = S with the law of composition in §3. Let L1 be the line through P and
Q, and let L2 be the line through O and S. From the definition of S, we know that L1 and
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L2 have a common point R as their third points of intersection. Regard L1 and L2 as linear
forms in X, Y, Z, and let ϕ = L1

L2
. Then ϕ has zeros at P,Q,R and poles at O, S,R, and so

div(ϕ) = [P ] + [Q] + [R]− [O]− [S]− [R] = [P ] + [Q]− [S]− [O].

Henc [P ] + [Q] ∼ [S] + [O], and P +Q = S according to the group structure defined by the
bijection.

Perfect base fields. Let C be a nonsingular absolutely irreducible plane projective curve
over a perfect field k (e.g., a field of characteristic zero or a finite field), and let F (X, Y, Z)
be the polynomial defining C . We can again form k[x, y, z] = k[X, Y, Z]/(F (X, Y, Z))—it is
an integral domain, and remains so even when tensored with kal—and the field k(x, y, z)0 ⊂
k(x, y, z). We define k(x, y, z)0 to be the field of meromorphic functions of C . We can no
longer identify its elements with functions on C(k) \ {finite set}, because, for example, C(k)
may be empty. However, we can identify its elements with functions on C(kal) \ {finite set}.
From another perspective, we can say that a meromorphic function ϕ on C(kal), i.e., an
element of kal(x, y, z)0, is defined over (or rational over) k if it lies in the subfield k(x, y, z)0
of kal(x, y, z)0.

The Galois group Γ = Gal(kal/k) acts on C(kal). Its orbits are finite because every
P ∈ C(kal) has coordinates in some finite extension of k. We deduce an action of Γ on
Div(C(kal)): τ (

∑
nP [P ]) =

∑
np[τP ]. A divisor D is said to be defined over (or rational

over) k if it is fixed by this action. Thus D is rational over k if and only if all P in each
Γ-orbit have the same coefficients nP in D.

For a divisor D on C rational over k, we can define L(D) to be the set of all meromorphic
functions on C rational over k such that divϕ+D ≥ 0 (together with 0). Then the Riemann-
Roch theorem continues to hold, and there is a bijection

P �→ [P ]− [O] : C(k) → Pic0(C)

where Pic0(C) = (Pic0(C(kal))Γ, i.e., it is the group of divisor classes of degree zero (over
kal) fixed by the action of Γ. Unfortunately, such a class need not be represented by a divisor
fixed by the action of Γ.

Exercise 4.8. Find a necessary and sufficient condition for the line L : Y = cX + d to be
an inflectional tangent to the affine curve C : Y 2 = X3+aX+ b, i.e., to meet C at a point P
with I(P, L ∩ C) = 3. Hence find a general formula for the elliptic curves in canonical form
having a rational point of order 3.

5. Definition of an Elliptic Curve

Definition 5.1. Let k be a field. An elliptic curve over k can be defined, according to taste,
as:

(a) A complete nonsingular curve E of genus 1 over k together with a point O ∈ E(k).
(b) A nonsingular plane projective E of degree 3 together with a point O ∈ E(k).
(c) A nonsingular plane projective curve E of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3
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The relation between these definitions is as follows. Let E be as in (c). Then E(k) contains
a canonical element O = (0 : 1 : 0), and the pair (E,O) satisfies the other two definitions.
This is obvious for (b), and (a) follows from the formula on p9.

Let (E,O) be as in (a). Then (see below) there is an isomorphism from E onto a curve
as in (c) sending O to (0 : 1 : 0).

Let (E,O) be as in (b). Then (see below) there is a change of variables transforming E
into a curve as in (c) and O into (0 : 1 : 0) (and if O is a point of inflection, the change of
variables can be taken to be linear).

Plane projective cubic curves with a rational inflection point. Let (E,O) be a
nonsingular cubic curve in P2(k). In this subsection, I assume that O is a point of inflection,
and I show that:

(a) after a linear change of variables (with coefficients in k), the point O will be (0 : 1 : 0)
and its tangent line will be L∞ : Z = 0;

(b) if (0 : 1 : 0) ∈ E(k) and the tangent line to E at (0 : 1 : 0) is L∞ : Z = 0, then the
equation of E has the form (5.1c).

Proof of (a). Let (a : b : c) ∈ P2(k), and assume b �= 0. The map

(x : y : z) → (bx− ay : by : bz − cy)
is well-defined for all (x : y : z) ∈ P2(k) and sends (a : b : c) to (0 : b2 : 0) = (0 : 1 : 0). If
b = 0, but c �= 0, we first interchange the y and z coordinates.

Consider a line

L : aX + bY + cZ = 0, a, b, c ∈ k, not all a, b, c zero.

Choose A = (aij) to be an invertible 3× 3 matrix whose first two columns are orthogonal to
(a, b, c), and define a change of variables

A

 X
′

Y ′

Z ′

 =

 XY
Z

 .
With respect to the variables X ′, Y ′, Z ′, the equation of the line L becomes

0 = (a, b, c)

 XY
Z

 = (a, b, c)A

 X
′

Y ′

Z ′

 = (0, 0, d)

 X
′

Y ′

Z ′

 = dZ ′.

Moreover, d �= 0, and so we may take the equation of the line to be Z ′ = 0.

This completes the proof of (a).

Proof of (b). The general cubic form is F (X, Y, Z):

c1X
3 + c2X

2Y + c3X
2Z + c4XY

2 + c5XY Z + c6XZ
2 + c7Y

3 + c8Y
2Z + c9Y Z

2 + c10Z
3.

Let E be the curve F (X, Y, Z) = 0. We assume that E is nonsingular; in particular, this
implies that F is absolutely irreducible.

If O = (0 : 1 : 0) lies on E, then c7 = 0 .

Recall that U1 = {(x : y : z) | y = 1}, and we identify U1 with A2 via (x : 1 : z) ↔ (x : z).
The curve C ∩ U1 is an affine curve with equation F (X, 1, Z):

c1X
3 + c2X

2 + c3X
2Z + c4X + c5XZ + c6XZ

2 + c8Z + c9Z
2 + c10Z

3.
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The tangent line at (0 : 1 : 0) ↔ (0, 0) is

c4X + c8Z = 0.

If this is L∞ : Z = 0, then c4 = 0 . Since E is nonsingular, we must have c8 �= 0 .

According to (1.5), the intersection number

I(O,L∞ ∩E) ≤ dimk k[X,Z]/(Z, F (X, 1, Z)).

But
k[X,Z]/(Z, F (X, 1, Z)) ≈ k[X]/(c2X2 + c1X

3).

If O is a point of inflection, then I(O,L∞ ∩E) ≥ 3, and so c2 = 0 .

On combining the boxed statements, we find that our equation has become

c1X
3 + c3X

2Z + c5XY Z + c6XZ
2 + c8Y

2Z + c9Y Z
2 + c10Z

3, c8 �= 0.

Moreover, c1 �= 0 because otherwise the polynomial is divisible by Z. Finally, after dividing
through by c1 and replacing Z with Z

−c8 , we obtain an equation of the same form as that in

(5.1c).

Remark 5.2 (Remedial math.). 7 The Hessian of a homogeneous polynomial F (X, Y, Z)
is the matrix

H(X, Y, Z) =


∂2F
∂X2

∂2F
∂X∂Y

∂2F
∂X∂Z

∂2F
∂X∂Y

∂2F
∂Y 2

∂2F
∂Y ∂Z

∂2F
∂X∂Z

∂2F
∂Y ∂Z

∂2F
∂Z2

 .
Assume char k �= 2. Then a nonsingular point (a : b : c) on the curve C : F = 0 is a point of
inflection if and only if detH(a, b, c) = 0 ([Kn] p38). This fact can be used to find a point of
inflection over k on a cubic curve (when it exists), and once one has such a point, the above
procedure allows one to find an equation for the curve in the form (5.1c) (ibid. 3.1).

If F has degree d, then detH has degree 3(d− 2). Thus, an irreducible cubic curve has at
least one point of inflection over kal, and at most 3. Unfortunately, it may have no point of
inflection with coordinates in k.

General plane projective curves. As we just noted, a plane projective cubic curve may
not have a point of inflection with coordinates in k. An invertible linear change of variables
will not change this (it will only multiply the Hessian by a nonzero constant). However,
if the curve has some point with coordinates in k, then there is a method (due to Nagell,
1928/29) that transforms the equation by a nonlinear change of variables so that the point
becomes a point of inflection, still with coordinates in k ([C2], p34).

Complete nonsingular curves of genus 1. Here we assume some algebraic geometry.
Let E be a complete nonsingular curve of genus 1 over a field k and let O ∈ E(k). According
to the Riemann-Roch theorem, the meromorphic functions on E having no poles except at
O and having at worst a pole of order m ≥ 1 at O, form a vector space of dimension m over
k, i.e., L(m[O]) has dimension m for m ≥ 1.

The constant functions lie in L([O]), and according to the Riemann-Roch theorem, there
are no other. Thus 1 is a basis for L([O]).

Choose x so that {1, x} is a basis for L(2[O]).

7These are topics that were once taught in high school, but are no longer taught anywhere, well, hardly
anywhere.
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Choose y so that {1, x, y} is a basis for L(3[O]).

Then {1, x, y, x2} is a basis for L(4[O]). (If it were linearly dependent, then x2 would have
to be a linear combination of 1, x, y, but then it couldn’t have a quadruple pole at O.)

And {1, x, y, x2, xy} is a basis for L(5[O]).

The subset {1, x, y, x2, xy, x3, y2} of L(6[O]) contains 7 elements, and so must be linearly
dependent: there exist constants ai such that

a0y
2 + a1xy + a3y = a

′
0x
3 + a2X

2 + a4X + a6

(as regular functions on E \ {O}). Moreover, a0 and a′0 must be nonzero, because the
set with either x3 or y2 omitted is linearly independent, and so, after multiplying through
by a constant and making a change of variables, we can suppose both equal 1. The map
P �→ (x(P ), y(P )) sends E \ {O} onto the plane affine curve

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

The function x has a double pole at O and no other pole, and so it has only two other zeros.
Therefore, the composite

E \ {O} → C → A1, P �→ (x(P ), y(P )) �→ x(P )

has degree 2, i.e., it is 2 : 1 on points with coordinates in kal (at least, if the characteristic
is zero). Similarly, the composite

E \ {O} → C → A1, P �→ (x(P ), y(P )) �→ y(P )

has degree 3. The degree of E \ {O} → C divides both 2 and 3, and therefore is 1. In fact,
it is an isomorphism, and it extends to an isomorphism of E onto the Zariski closure of C
in P2, i.e., onto the curve given by an equation of the form (5.1c).

The canonical form of the equation. Thus, however we define it, an elliptic curve is
isomorphic to a curve of the form

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

and, conversely, every nonsingular such E is an elliptic curve. This is usually referred to as
the canonical or Weierstrass equation of the curve, but how canonical is it? One can show
that it is canonical up to a change of variables of the form:

X = u2X ′ + r

Y = u3Y ′ + su2X ′ + t

with u, r, s, t ∈ k and u �= 0.

Everything becomes simpler if we assume that chark �= 2, 3. A change of variables

X ′ = X, Y ′ = Y +
a1
2
X, Z ′ = Z

will eliminate the XY Z term, and a change of variables

X ′ = X +
a2
3
, Y ′ = Y +

a3
2
, Z ′ = Z

will then eliminate the X2 and Y terms. Thus we arrive at the equation:

Y 2Z = X3 + aXZ2 + bZ3.
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Theorem 5.3. Assume char k �= 2, 3.

(a) The curve

E(a, b) : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ k,
is nonsingular, and hence (together with O = (0 : 1 : 0)) defines an elliptic curve over k, if
and only if 4a3 + 27b2 �= 0.

(b) Every elliptic curve over k is isomorphic to one of the form E(a, b).

(c) Two elliptic curves E(a, b) and E(a′, b′) are isomorphic if and only if there exists a
c ∈ k× such a′ = c4a, b′ = c6b; the isomorphism is then

(x : y : z) �→ (c2x : c3y : z).

Proof. (a) We proved in (1.3) that the affine curve

Y 2 = X3 + aX + b

is nonsingular if and only if 4a3 + 27b2 �= 0. The point (0 : 1 : 0) is always nonsingular.

(b) This was discussed above.

(c) The “if” is obvious. We omit the “only if” (see, for example, [S1] pp64–65).

Remark 5.4. For an elliptic curve E, define

j(E) =
1728(4a3)

4a3 + 27b2

if E ≈ E(a, b). Since the expression on the right is unchanged when (a, b) is replaced by
(c4a, c6b), this is well-defined, and E ≈ E ′ =⇒ j(E) = j(E ′). Conversely, j(E) = j(E ′) =⇒
E ≈ E ′ when k is algebraically closed (see later), but not otherwise. For example, if c is not
a square in k, then

Y 2Z = X3 + ac2XZ2 + bc3Z3

has the same j invariant as E(a, b), but it is not isomorphic to it.

The group law for the canonical form. The point at ∞ is the zero for the group law.
The group law is determined by:

P +Q+R = O ⇐⇒ P,Q,R lie on a straight line;

if P = (x : y : z), then − P = (x : −y : z).
In particular, −P = P , i.e., P has order 2 if and only if y = 0. The points of order two are
the points (x : 0 : 1) where x is a root of X3 + aX + b.

6. Reduction of an Elliptic Curve Modulo p

Consider an elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Q, ∆ = 4a3 + 27b2 �= 0.

After a change of variables we may suppose a, b ∈ Z, and so we may look at them modulo
p to get a curve over Fp =df Z/pZ. In this section, we examine what curves we get in this
fashion.
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Algebraic groups of dimension 1. Let k be an arbitrary perfect field. The following
is a complete list of connected algebraic curves over k having group structures defined by
polynomial maps.

Elliptic curves. These are the only projective curves having a group structure defined by
polynomial maps.

The additive group. The affine line A1 is a group under addition:

A1(k) = k, (x, y) �→ x+ y : k × k → k.

We sometimes write Ga for A1 endowed with this group structure.

The multiplicative group. The affine line with the origin removed is a group under multipli-
cation:

A1(k) \ {(0)} = k×, (x, y) �→ xy : k× × k× → k×.

We sometimes write Gm for A1 \ {(0)} endowed with this group structure. Note that the
map x �→ (x, x−1) identifies Gm with the plane affine curve XY = 1.

Twisted multiplicative groups. Let a ∈ k\k2, and let L = k[
√
a]. There is an algebraic group

G over k such that

G(k) = {γ ∈ L× | NmL/k γ = 1}.
Let α =

√
a, so that {1, α} is a basis for L as a k-vector space. Then Nm(x+αy) = x2−ay2

and (x+αy)(x′+αy′) = xx′+ ayy′+α(xy′+x′y). We define G to be the plane affine curve
X2 − aY 2 = 1, with the group structure

(x, y)× (x′, y′) = (xx′ + ayy′, xy′ + x′y).

We denote this group by Gm[a]. For example, when k = R and a = −1, we get the circle
group X2 + Y 2 = 1.

Note that a change of variables transforms Gm[a] into Gm[ac
2], any c �= 0, and so, up to

a change of variables, Gm[a] depends only on the field k[
√
a]. The equations defining Gm[a]

still define an algebraic group when a is a square in k, say a = α2, but then X2 − aY 2 =
(X +αY )(X −αY ), and so the change of variables X ′ = X +αY , Y ′ = X −αY transforms
the group into Gm. In particular, this shows that Gm[a] becomes isomorphic to Gm over
k[
√
a], and so it can be thought of a “twist” of Gm.

Remark 6.1. Let k = Fq , the field with q-elements. Then Ga(k) has q-elements, Gm(k) has
q − 1 elements, and Gm[a](k) has q + 1 elements (here a is any nonsquare in k). Only the
last is not obvious. From the definition of Gm[a], we know there is an exact sequence

0 → Gm[a](Fq) → (Fq2)
× −−→

Nm
F×
q → 0.

The second map is surjective (because a quadratic form in at least three variables over a
finite field always has a nontrivial zero (Serre, Course on Arithmetic)), and so

#Gm[a](Fq) = (q2 − 1)/(q − 1) = q + 1.
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We make a few remarks concerning the proofs of the above statements. We have seen that
if a nonsingular projective curve has genus 1, then its has a group structure, but why is the
converse true? The simplest explanation (for the case k = C) comes from topology. The
Lefschetz fixed point theorem8 says that, if M is a compact oriented manifold, then for any
continuous map α :M → M ,

(∆ · Γα) =
∑

(−1)iTrace(α|H i(M,Q)).

Here ∆ is the diagonal in M ×M and Γα is the graph of α, so that (∆ ·Γα) is the number of
“fixed points of α counting multiplicities”. Let L(α) be the integer on the right. If M has a
group structure, then the translation map τa = (x �→ x+ a), a �= 0, has no fixed points, and
so

L(τa) = (∆ · Γα) = 0.

But a �→ L(τa) : M → Z is continuous, and hence constant on each connected component.
On letting a tend to zero, we find that L(τ0) = 0. But τ0 is the identity map, and so

L(τ0) =
∑

(−1)i Tr(id |Hi(M,Q)) =
∑

(−1)i dimQH
i(M,Q).

Thus, ifM has a group structure, its Euler-Poincaré characteristic must be zero. The Euler-
Poincaré characteristic of a complex curve of genus g is 1− 2g + 1 = 2 − 2g, and so g = 1
the curve has a continuous group structure.

A similar argument works over any field. One proves directly that for the diagonal ∆ in
C ×C ,

(∆ ·∆) = 2− 2g, (∆ · Γτa) = 0, a �= 0,

and then “by continuity” that (∆ ·∆) = (∆ · Γτa).
The proof that Ga and Gm are the only affine algebraic groups of dimension one can

be found in most books on algebraic groups when k is algebraically closed (see for example,
Borel, Linear Algebraic Groups, 10.9, who notes that the first published proof is in an article
of Grothendieck). The extension to nonalgebraically closed fields is an easy exercise in Galois
cohomology.

Singular cubic curves. Let E be a singular plane projective curve over a perfect field k
of characteristic �= 2. As we noted on p8, it will have exactly one singular point S, and
S will have coordinates in k. Assume E(k) contains a point O �= S. It is a curious fact
that exactly the same definition as in the nonsingular case turns E(k) \ {S} into a group.
Namely, consider the line through two nonsingular points P and Q. According to Bezout’s
theorem and (1.7), it will intersect the curve in exactly one additional point R, which can’t
be singular. Define P +Q to be the third point of intersection of the line through R and O
with the cubic. We examine this in the three possible cases.

Cubic curves with a cusp. The plane projective curve

E : Y 2Z = X3

has a cusp at S = (0 : 0 : 1) because the affine curve Y 2 = X3 has a cusp at (0, 0). Note
that S is the only point on the projective curve with Y -coordinate zero, and so E(k) \ {S}
is equal to the set of points on the affine curve E ∩ {Y �= 0}, i.e., on the curve

E1 : Z = X3.

8See, for example, Greenberg, Lectures on Algebraic Topology.
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The line Z = αX + β intersects E1 at the points P1 = (x1, z1), P2 = (x2, z2), P3 = (x3, z3)
with x1, x2, x3 roots of

X3 − αX − β.
Because the coefficient of X2 in this polynomial is zero, the sum x1 + x2 + x3 of its roots is
zero. Therefore the map

P �→ x(P ) : E1(k) → k

has the property that

P1 + P2 + P3 = 0 =⇒ x(P1) + x(P2) + x(P3) = 0.

Since O = (0, 0), the map P �→ −P is (x, z) �→ (−x,−z), and so P �→ x(P ) also has the
property that

x(−P ) = −P.
These two properties imply that P �→ x(P ) : E1(k) → k is a homomorphism. In fact, it is

an isomorphism. In summary: the map P �→ x(P )
y(P )

: E(k) \ S → Ga(k) is an isomorphism.

Cubic curves with a node. The curve

Y 2Z = X3 + cX2Z, c �= 0,

has a node at (0 : 0 : 1) because the affine curve

Y 2 = X3 + cX2, c �= 0,

has a node at (0, 0). The tangent lines at (0, 0) are given by the equation

Y 2 − cX2 = 0.

If c is a square, this factors as

(Y − √
cX)(Y +

√
cX) = 0

and we get two tangent lines. In this case the tangent lines are said to be rational (i.e.,
defined) over k. When endowed with its group structure, E \ {singular point} becomes
isomorphic to Gm.

If c is not a square, so the tangent lines are not rational over k, then E\{singular point} ≈
Gm[c]. See [C2], Chapter 9.

Criterion. We now derive a criterion for deciding which of the above cases the curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ k, ∆ = 4a3 + 27b2 = 0

falls into. We assume char k �= 2, 3. Since the point (0 : 1 : 0) is always nonsingular, we only
need to study the affine curve

E0 : Y
2 = X3 + aX + b.

We try to find a t such that equation is

Y 2 = (X − t)2(X + 2t)
= X3 − 3t2X + 2t3.

For this, we need to choose t so that

t2 = −a
3
, t3 =

b

2
.
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Hence t = b/2
−a/3 = −3

2
b
a
. Using that ∆ = 0, one checks that this works.

Now, we can rewrite the equation as

Y 2 = 3t(X − t)2 + (X − t)3.
This has a singularity at (t, 0), which is a cusp if 3t = 0, a node with rational tangents if 3t
is a nonzero square in k, and a node with nonrational tangents if 3t is a nonzero nonsquare.
Note that

−2ab = −2(−3t2)(2t3) = (2t2)2(3t)

and so 3t is zero or nonzero, a square or a nonsquare, according as −2ab is.

Reduction of an elliptic curve. Consider an elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Q, ∆ = 4a3 + 27b2 �= 0.

We make a change a variables X �→ X/c2, Y �→ Y/c3 with c chosen so that the new a, b are
integers and |∆| is minimal—such an equation is said to be minimal. The equation

Ē : Y 2Z = X3 + āXZ2 + b̄Z3

where ā and b̄ are the images of a and b in Fp is called the reduction of E modulo p.

There are three cases to consider (and two subcases).

(a) Good reduction. If p �= 2 and p does not divide ∆, then Ē is an elliptic curve over
Fp. For a point P = (x : y : z) on E, we can choose a representative (x, y, z) for P with
x, y, z ∈ Z and having no common factor, and then P̄ =df (x̄ : ȳ : z̄) will be a well-defined
point on Ē. Since (0 : 1 : 0) reduces to (0 : 1 : 0) and lines reduce to lines, the map
E(Q) → Ē(Fp) is a homomorphism, and Hensel’s lemma implies that E(Qp) → Ē(Fp) is
surjective (see 2.10). The Riemann hypothesis (see later) shows that

|#Ē(Fp) − p− 1| ≤ 2
√
p.

(b) Cuspidal reduction. Here the reduced curve has a cusp as singularity. For p �= 2, 3, it
occurs exactly when p|4a3 + 27b2 and p| − 2ab.

(c) Nodal reduction. Here the reduced curve has a node as singularity. For p �= 2, 3, it
occurs exactly when p|4a3+27b2 and p does not divide −2ab. The tangents at the node are
rational over Fp if and only if −2ab mod p is a square in Fp.

The following table summarizes our results (p �= 2, 3, N is the number of nonsingular
points on Ē with coordinates in Fp).

Reduction ∆ mod p −2ab mod p Ens N
good �= 0 E |N − p− 1| ≤ 2

√
p

cusp 0 0 Ga p
node; rational tangents 0 � Gm p− 1

node; nonrational tangents 0 �= � Gm[−2āb̄] p + 1

Other names:

cuspidal = additive;

nodal with rational tangents = split multiplicative;

nodal with nonrational tangents = nonsplit multiplicative.
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Semistable reduction. If E has good or nodal reduction, then the minimal equation re-
mains minimal after replacing the ground field (here Q) by a larger field. This is not so for
cuspidal reduction. Consider, for example, the curve

E : Y 2Z = X3 + pXZ2 + pZ3.

After passing to a larger extension, in which p is a sixth power, say, c6 = p, we can make a
change of variables so that the equation becomes

E : Y 2Z = X3 + c2XZ2 + Z3.

This reduces to

Y 2Z = X3 + Z3,

which is nonsingular. In fact, for any curve E with cuspidal reduction at p, there will exist a
finite extension of the ground field such that E will have either have good or nodal reduction
at the primes over p.

In summary: good and nodal reduction are not changed by a field extension (in fact,
the minimal model remains minimal) but cuspidal reduction always becomes good or nodal
reduction in an appropriate finite extension (and the minimal model changes). For this
reason, a curve is often said to have semistable reduction at p if it has good or nodal
reduction there.

Reduction modulo 2 and 3. When considering reduction at 2 or 3, one needs to consider
the full equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

because it may be possible to find an equation of this form that is “more minimal” for 2 or
3 than any of the form

Y 2Z = X3 + aXZ2 + bZ3.

For example, it may be possible to find one of the first form that gives a nonsingular curve
over F2, whereas all equations of the second form become singular over F2 (see 1.3).

Other fields. Throughout this section, we can replace Q and Z with Qp and Zp, or in fact
with any local field and its ring of integers. Also, we can replace Q and Z with a number field
K and its ring of integers, with the caution that, for a number field K with class number
�= 1, it may not be possible to find an equation for the elliptic curve that is minimal for all
primes simultaneously.

Exercise 6.2. (a) Find examples of elliptic curves E over Q such that

(i) Ē has a cusp S which lifts to a point in E(Qp);

(ii) Ē has a node S which lifts to a point in E(Qp);

(iii) Ē has a node S which does not lift to a point in E(Qp).

Here Ē is the reduction of the curve modulo a prime p �= 2, 3. The equation you give for
E should be a minimal equation of the standard form Y 2Z = X3 + aXZ2 + bZ3.

(b) For the example you gave in (a)(i), decide whether it acquires good or nodal reduction
in a finite extension of Q.
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7. Elliptic Curves over Qp

Notation: A nonzero rational number a can be written a = pm r
s
with r and s not divisible

by p. We then set ordp(a) = m. The following rule is obvious:

ordp(a+ b) ≥ min{ordp(a), ordp(b)}, with equality unless ordp(a) = ordp(b).

Similarly, for an a ∈ Qp, we set ordp(a) = m if a ∈ pmZp \ pm+1Zp. The same rule holds,
and the two definitions of ordp agree on Q. In both cases, we set ordp(0) = ∞. Note that
ordp is a homomorphism Q×

p →Z.

Consider a curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Qp, 4a3 + 27b2 �= 0.

After a change of variables X �→ X/c2, Y �→ Y/c3, Z �→ Z, we may suppose that a, b ∈ Zp.
As in the last section, we obtain from E a curve Ē over Fp and a reduction map

P �→ P̄ : E(Qp) → Ē(Fp).

We shall define a filtration

E(Qp) ⊃ E0(Qp) ⊃ E1(Qp) ⊃ · · · ⊃ En(Qp) ⊃ · · ·
and identify the quotients. First, define

E0(Qp) = {P | P̄ is nonsingular}.
It is a subgroup because, as we observed on p26, a line through two nonsingular points on a
cubic (or tangent to a nonsingular point), will meet the cubic again at a nonsingular point.

Write Ēns for Ē \ {any singular point}. The reduction map

P �→ P̄ : E0(Qp) → Ēns(Fp)

is a homomorphism, and we define E1(Qp) be its kernel. Thus E
1(Qp) consists of the points

P that can be represented as (x : y : z) with x and z divisible by p but y not divisible by p.
In particular, P ∈ E1(Qp) =⇒ y(P ) �= 0.

Define

En(Qp) = {P ∈ E1(Qp) | x(P )
y(P )

∈ pnZp}.

Theorem 7.1. The filtration E(Qp) ⊃ E0(Qp) ⊃ E1(Qp) ⊃ · · · ⊃ En(Qp) ⊃ · · · has the
following properties:

(a) the quotient E(Qp)/E
0(Qp) is finite;

(b) the map P �→ P̄ defines an isomorphism E0(Qp)/E
1(Qp) → Ē(Fp);

(c) for n ≥ 1, En(Qp) is a subgroup of E(Qp), and the map P �→ p−n x(P )
y(P )

mod p is an

isomorphism En(Qp)/E
n+1(Qp) → Fp;

(d) the filtration is exhaustive, i.e., ∩nEn(Qp) = {0}.
Proof. (a) We prove that E(Qp) has a natural topology with respect to which it is compact
and E0(Qp) is an open subgroup. Since E(Qp) is a union of the cosets of E0(Qp), it will
follow that there can only be finitely many of them.

Endow Qp×Qp×Qp with the product topology, Q3
p\{(0, 0, 0)} with the subspace topology,

and P2(Qp) with the quotient topology via Q3
p \ {(0, 0, 0)} → P2(Qp). Then P2(Qp) is the

union of the images of the sets Z×
p × Zp × Zp, Zp × Z×

p × Zp, Zp × Zp × Z×
p , each of which is
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compact and open. Therefore P2(Qp) is compact. Its subset E(Qp) is closed, because it is
the zero set of a polynomial. Relative to this topology on P2(Qp) two points that are close
will have the same reduction modulo p. Therefore E0(Qp) is the intersection of E(Qp) with
an open subset of P2(Qp).

(b) Hensel’s lemma implies that the reduction map E0(Qp) → Ē(Fp) is surjective, and we
defined E1(Qp) to be its kernel.

(c) We assume (inductively) that En(Qp) is a subgroup of E(Qp). If P = (x : y : 1) lies in
E1(Qp), then y /∈ Zp. Set x = p

−mx0 and y = p−m
′
y0 with x0 and y0 units in Zp. Then

p−2m
′
y20 = p

−3mx30 + ap
−mx0 + b.

On taking ordp of the two sides, we find that −2m′ = −3m. Since m′ and m are integers,
this implies that there is an integer n such m = 2n and m′ = 3n; in fact, n = ordp(

x
y
).

The above discussion shows that if P = (x : y : z) ∈ En(Qp) \ En+1(Qp), n ≥ 1, then{
ordp(x) = ordp(z)− 2n
ordp(y) = ordp(z)− 3n.

Hence P can be expressed P = (pnx0 : y0 : p
3nz0) with ordp(y0) = 0 and x0, z0 ∈ Zp. In fact,

this is true for all P ∈ En(Qp). Since P lies on E,

p3ny20z0 = p
3nx30 + ap

7nx0z
2
0 + bp

9nz30,

and so P0 =df (x̄0 : ȳ0 : z̄0) lies on the curve

E0 : Y
2Z = X3.

As ȳ0 �= 0, P0 is not the singular point of E0. From the description of the group laws in
terms of chords and tangents, we see that the map

P �→ P0 : E
n(Qp) → E0(Fp)

is a homomorphism. Its kernel is En+1(Qp), which is therefore a subgroup, and it follows
from Hensel’s lemma that its image is the set of nonsingular points of E0(Fp). We know

(see p27) that Q �→ x(Q)
y(Q)

is an isomorphism E0(Fp) \ {singularity} → Fp. The composite

P �→ P0 �→ x(P0)
y(P0)

is P �→ p−nx(P )
y(P )

mod p.

(d) If P ∈ ∩En(Qp), then x(P ) = 0, y(P ) �= 0. This implies that either z(P ) = 0 or
Y 2 = bZ2, but the second equation would contradict P ∈ E1(Qp). Hence z(P ) = 0 and
P = (0 : 1 : 0).

Remark 7.2. In the above, Qp can be replaced with any local field.

Remark 7.3. It is possible to say much more about the structure of E(Qp). A one-
parameter commutative formal group over a (commutative) ring R is a power series
F (X, Y ) ∈ R[[X, Y ]] satisfying the following conditions:

(a) F (X, Y ) = X + Y + terms of degree ≥ 2;
(b) F (X,F (Y, Z)) = F (F (X, Y ), Z);
(c) F (X, Y ) = F (Y,X);
(d) there is a unique power series i(T ) ∈ R[[T ]] such that F (T, i(T )) = 0.
(e) F (X, 0) = X and F (0, Y ) = Y .
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In fact, (a) and (b) imply (d) and (e). If F is such a formal group over Zp, then the series
F (a, b) converges for a, b ∈ pZp, and so F makes pZp into a group. One can show ([S1]
Chapter IV) that an elliptic curve E over Qp defines a formal group F over Zp, and that
there are power series x(T ) and y(T ) such that t �→ (x(t) : y(t) : 1) is an isomorphism of
pZp (endowed with the group structure provided by F ) onto E1(Qp). This is useful because
it allows us to derive results about elliptic curves from results about formal groups, which
are generally easier to prove.

An algorithm to compute intersection numbers. For f(X, Y ), g(X, Y ) ∈ k[X, Y ], set I(f, g) =
I(origin, {f = 0} ∩ {g = 0}). We explain how to compute I(f, g) using only the following
properties of the symbol: I(X, Y ) = 1; I(f, g) = I(g, f); I(f, gh) = I(f, g) + I(f, h);
I(f, g + hf) = I(f, g) for all h; I(f, g) = 0 if g(0, 0) �= 0. Regard f(X, Y ) and g(X, Y ) as
elements of k[X][Y ]. The theory of resultants allows us to construct polynomials a(X, Y )
and b(X, Y ) such that af + bg = r(X) with r(X) ∈ k[X] and degY (b) < degY (f), degY (a) <
degY (g). Now

I(f, g) = I(f, bg)− I(f, b) = I(f, r)− I(f, b).
Continue in this fashion until Y is eliminated from one of the polynomials, say, from g, so
that g = g(X) ∈ k[X]. Write g(X) = Xmg0(X) where g0(0) �= 0. Then

I(f, g) = mI(f,X).

After subtracting a multiple of X from f(X, Y ), we can assume that it is a polynomial in
Y . Write f(Y ) = Y nf0(Y ) where f0(0) �= 0. Then

I(f,X) = n.

This algorithm is practical on a computer, but if the polynomials are monic when regarded
as polynomials in Y , the following method is faster. If degY (g) ≥ degY (f), we can divide f
into g (as polynomials in Y ) and obtain

g = fh+ r, degY r < degY f or r = 0.

Moreover,
I(f, g) = I(f, r).

Continue in this fashion until one of the polynomials has degree 1 in Y , and apply the
following lemma.

Lemma 7.4. If f(0) = 0, then I(Y − f(X), g(X, Y )) = m where Xm is the power of X
dividing g(X, f(X)).

Proof. We divide Y − f(X) into g(X, Y ) (as polynomials in Y ) to obtain

g(X, Y ) = (Y − f(X))h(X, Y ) + g(X, f(X)),
from which it follows that

I(Y − f(X), g(X, Y )) = I(Y − f(X), g(X, f(X)) = mI(Y − f(X), X).
Finally, since we are assuming f(0) = 0, f(X) = Xh(X), and so

I(Y − f(X), X) = I(Y,X) = 1.
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8. Torsion Points

Throughout this section, E will be the elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Z, ∆ = 4a3 + 27b2 �= 0,

except that in second half of the section, we allow a, b ∈ Zp.

Theorem 8.1 (Lutz-Nagell). If P = (x : y : 1) ∈ E(Q)tors, then x, y ∈ Z and either y = 0
or y|∆.
Remark 8.2. (a) The theorem provides an algorithm for finding all the torsion points on
E: for each pair (x, y) ∈ Z with y = 0 or y|∆, check to see whether (x : y : 1) is on E and
whether it is a torsion point. It is not essential, but it helps, if the equation of E is chosen
so that ∆ is minimal among those with integer coefficients.

(b) The converse of the theorem is not true: a point P = (x : y : 1) ∈ E(Q) can satisfy
the conditions in the theorem without being a torsion point.

(c) The theorem can often be used to prove that a point P ∈ E(Q) is of infinite order:
compute multiples nP of P until you arrive at one whose coordinates are not integers, or
better, just compute the x-coordinates of 2P , 4P , 8P , using the duplication formula (see
the end of this section).

The theorem will follow from the next two results: the first says that if P and 2P have
integer coordinates (when we set z = 1), then either y = 0 or y|∆; the second implies that
torsion points (hence also their multiples) have integer coordinates.

Lemma 8.3. Let P = (x1 : y1 : 1) ∈ E(Q). If P and 2P have integer coordinates (when
we set z = 1), then either y1 = 0 or y1|∆.
Proof. Assume y1 �= 0, and set 2P = (x2 : y2 : 1). Then 2P is the second point of intersection
of the tangent at P to the affine curve

Y 2 = f(X), f(X) = X3 + aX + b.

The tangent line at P is

Y = αX + β, where α =

(
dY

dX

)
P

=
f ′(x1)
2y1

.

To find where this line intersects the affine curve, substitute for Y in the equation of the
curve to obtain:

(αX + β)2 = X3 + aX + b.

Thus the X-coordinates of the points of intersection are the roots of the cubic:

X3 + aX + b− (αX + β)2 = X3 − α2X2 + · · · .
But we know that the X-coordinates of these points are x1, x1, x2, and so

x1 + x1 + x2 = α
2.

Since x1 and x2 are integers, so also are α
2 and α = f ′(x1)

2y1
. Thus y1|f ′(x1), and directly from

the equation y21 = f(x1) we see that y1|f(x1). Hence y1 divides both f(x1) and f ′(x1). The
theory of resultants (see [C2], Chapter on Remedial Mathematics) shows that

∆ = r(X)f(X) + s(X)f ′(X), r(X), s(X) ∈ Z[X],
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and so this implies that y1|∆. [In our case, r(X) = −27(X3 + aX − b) and s(X) = (3X2 +
4a)(3X2 + a).]

Proposition 8.4. The group E1(Qp) is torsion-free.

Before proving the proposition, we derive some consequences.

Corollary 8.5. If P = (x : y : 1) ∈ E(Qp)tors, then x, y ∈ Zp.

Proof. Recall that P̄ is obtained from P by choosing primitive coordinates (x : y : z)
for P (i.e., coordinates such that x, y, z ∈ Zp but not all of x, y, z ∈ pZp), and setting
P̄ = (x̄ : ȳ : z̄), and that E1(Qp) = {P ∈ E(Qp) | P̄ = (0 : 1 : 0)}. If P = (x : y : 1)
with x or y not in Zp, then any primitive coordinates (x′ : y′ : z′) for P will have z′ ∈ pZp.
Hence z(P̄ ) = 0, which implies P̄ = (0 : 1 : 0), and so P ∈ E1(Qp). We have proved (the
contrapositive of) the statement:

if P = (x : y : 1) /∈ E1(Qp), then x, y ∈ Zp.

The proposition shows that if P is a nonzero torsion point, then P /∈ E1(Qp).

Corollary 8.6. If P = (x : y : 1) ∈ E(Q)tors, then x, y ∈ Z.

Proof. This follows from the previous corollary, because if a rational number r is not an
integer, then ordp(r) < 0 for some p, and so r /∈ Zp.

Corollary 8.7. If E has good reduction at p (i.e., p �= 2 and p does not divide ∆), then the
reduction map

E(Q)tors → Ē(Fp)

is injective.

Proof. BecauseE has good reduction, E0(Qp) = E(Qp). The reduction mapE(Qp) → Ē(Qp)
has kernel E1(Qp), which intersects E(Q)tors in {O}.
Remark 8.8. This puts a very serious restriction on the size of E(Q)tors. For example, if E
has good reduction at 5, then, according to the Riemann hypotheses, Ē will have at most
5+1+2

√
5 points with coordinates in F5, and so E will have at most 10 torsion points with

coordinates in Q.

We now prove Proposition 8.4. In one case this follows directly from the results of Section
7. Let P ∈ E1(Qp) be a torsion point of order m not divisible by p. If P �= 0, then9

P ∈ En(Qp) \ En+1(Qp) for some n. But we have an isomorphism (of abelian groups)

P �→ p−n
x(P )

y(P )
: En(Qp)/E

n+1(Qp)
≈−→ Z/pZ

(Theorem 7.1c). By assumption, the image of P under this map is nonzero, which implies
that m times the image will also be nonzero. This contradicts the fact that mP = 0.

To prove the general case, where p may divide the order of P , we have to analyze the
filtration more carefully.

For P ∈ E1(Qp), we have y(P ) �= 0, which suggests that we look at the affine curve
E ∩ {(x : y : z} | y �= 0}:

E1 : Z = X3 + aXZ2 + bZ3.

9“\” is “setminus”, so this means P ∈ En(Qp), P /∈ En+1(Qp).
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A point P = (x : y : z) on E has coordinates x′(P ) =df
x(P )
y(P )

, z′(P ) =df
z(P )
y(P )

on E1. For

example, O = (0 : 1 : 0) becomes the origin on E1, and so P �→ −P becomes reflection in
the origin (x′, z′) �→ (−x′,−z′). Just as on E, P +Q+R = 0 if and only if P,Q,R lie on a
line.

In terms of our new picture,

En(Qp) = {P ∈ E1(Qp) | x′(P ) ∈ pnZp}.
Thus the En(Qp)’s form a fundamental system of neighbourhoods of the origin in E1(Qp).
The key lemma is following:

Lemma 8.9. Let P1, P2, P3 ∈ E(Qp) be such that P1 + P2 + P3 = O. If P1, P2 ∈ En(Qp),
then P3 ∈ En(Qp), and

x′(P1) + x′(P2) + x′(P3) ∈ p5nZp.

Before proving the lemma, we explain why it implies the proposition. For P ∈ En(Qp),
let x̄(P ) = x′(P ) mod p5nZp. The lemma shows that the map

P �→ x̄(P ) : En(Qp) → pnZp/p
5nZp

has the property:

P1 + P2 + P3 = 0 =⇒ x̄(P1) + x̄(P2) + x̄(P3) = 0.

Since x̄(−P ) = −x̄(P ), it is therefore a homomorphism of abelian groups. Suppose that
P ∈ E1(Qp) has order m divisible by p. Then Q =df

m
p
P will also lie in E1(Qp) and will

have order p. Since Q �= 0, for some n, Q ∈ En(Qp) \En+1(Qp). Then x̄(Q) ∈ pnZp \ pn+1Zp

mod p5nZp , and so

x̄(pQ) = px̄(Q) ∈ pn+1Zp \ pn+2Zp mod p5nZp.

This contradicts the fact that pQ = 0.

We now prove the lemma. We saw in Section 7 that if P = (x : y : 1) ∈ En(Qp)\En+1(Qp),
then ordp(x) = −2n, ordp(y) = −3n. In terms of homogeneous coordinates P = (x : y : z),
this means that

P ∈ En(Qp) \ En+1(Qp) =⇒
 ordp

x(P )
z(P )

= −2n
ordp

y(P )
z(P )

= −3n =⇒
 ordp

x(P )
y(P )

= n

ordp
z(P )
y(P )

= 3n
.

Thus

P ∈ En(Qp) =⇒ x′(P ) ∈ pnZp, z′(P ) ∈ p3nZp.

Let Pi = (x′i, z
′
i), i = 1, 2, 3. The line through P1, P2 (assumed distinct) is Z = αX+β where

α =
z′2 − z′1
x′2 − x′1

= . . . =
x′2
2 + x′1x

′
2 + x

′
1
2 + az′2

2

1− ax′1(z′2 + z′1)− b(z′22 + z′1z2 + z′12)
∈ p2nZp.

Moreover

β = z′1 − αx′1 ∈ p3nZp.

On substituting αX + β for Z in the equation for E1, we obtain the equation

αX + β = X3 + aX(αX + β)2 + b(αX + β)3.
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We know that the solutions of this equation are x′1, x
′
2, x

′
3, and so

x′1 + x
′
2 + x

′
3 =

2aαβ + 3bα2β

1 + aα2 + bα3
∈ p5nZp.

The proof when P1 = P2 is similar. For full details, including the elementary calculation
omitted for α, see [ST] p50–54.

Remark 8.10. When Q is replaced by a number field K, the above argument may fail to
show that torsion elements of E(K) have coordinates that are algebraic integers (when z is
taken to be 1). Let π be a prime element in Kv. The same argument as above shows that
there is an isomorphism

En(Kv)/E
5n(Kv) → πnOv/π

5nOv.

However, if p is a high power of π (i.e., the extension K/Q is highly ramified v) and n is
small, this no longer excludes the possibility that En(Kv) may contain an element of order
p.

Formulas. We give formulas for the addition and doubling of points on the curve

E : Y 2 = X3 + aX + b, a, b ∈ k ∆ = 4a3 + 27b2 �= 0.

As above, the strategy for deriving the formulas is to first find the x-coordinate of the point
sought by using that the sum of the roots of a polynomial f(X) is −(coefficient of Xdeg f−1).

Addition formula. Let P = (x, y) be the sum of P1 = (x1, y1) and P2 = (x2, y2). If P2 = −P1,
then P = O, and if P1 = P2, we can apply the duplication formula. Otherwise, x1 �= x2, and
(x, y) is determined by the following formulas:

x(x1 − x2)2 = x1x22 + x21x2 − 2y1y2 + a(x1 + x2) + 2b

and

y(x1 − x2)3 = W2y2 −W1y1

where

W1 = 3x1x
2
2 + x

3
2 + a(x1 + 3x2) + 4b

W2 = 3x21x2 + x
3
1 + a(3x1 + x2) + 4b.

Duplication formula. Let P = (x, y) and 2P = (x2, y2). If y = 0, then 2P = 0. Otherwise
y �= 0, and (x2, y2) is determined by the following formulas:

x2 =
(3x2 + a)2 − 8xy2

4y2
=
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)

y2 =
x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− a3 − 8b2

(2y)3
.

Exercise 8.11. For four of the following elliptic curves (including at least one of the last
four), compute the torsion subgroups of E(Q). (Include only enough details to convince the
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grader that you really did work it out.)

Y 2 = X3 + 2

Y 2 = X3 +X

Y 2 = X3 + 4

Y 2 = X3 + 4X

Y 2 + Y = X3 −X2

Y 2 = X3 + 1

Y 2 −XY + 2Y = X3 + 2X2

Y 2 + 7XY − 6Y = X3 − 6X2

Y 2 + 3XY + 6Y = X3 + 6X2

Y 2 − 7XY − 36Y = X3 − 18X2

Y 2 + 43XY − 210Y = X3 − 210X2

Y 2 = X3 −X
Y 2 = X3 + 5X2 + 4X

Y 2 + 5XY − 6Y = X3 − 3X2

Y 2 = X3 + 337X2 + 20736X

Solution to Exercise 4.8. No vertical line is an inflectional tangent, and so we may assume
c �= 0. The line L : Y = cX + d intersects the curve at the points whose X-coordinates
satisfy

(cX + d)2 = X3 + aX + b.

By Bezout’s theorem, L be an inflectional tangent to E if and only if it meets the projective
curve in a single point. This will be so if and only if

X3 − c2X2 + (a− 2cd)X + b− d2
has a triple root (which will automatically lie in Q). Hence there must exist an r ∈ Q such
that

−3r = −c2, 3r2 = a− 2cd, −r3 = b− d2.
When we use the first equation to eliminate r from the remaining two, we find that

a = 2cd +
c4

3
, b = d2 − c6

27
.

Conversely, if these equations hold, then r = c2/3 is a triple root of the above polynomial,
and so L is an inflectional tangent.

Note that 3P = 0 if and only if 2P = −P , i.e., if and only if the tangent line at P is an
inflectional tangent. Only the line L∞ : Z = 0 is an inflectional tangent at O. Thus E will
have a rational point of order 3 if and only if a, b can be expressed as above in terms of two
rational numbers c, d. Therefore the general form of an elliptic curve having a rational point
of order 3 is

Y 2Z = X3 + (2cd +
c4

3
)X + (d2 − c6

27
), 4(2cd +

c4

3
)3 + 27(d2 − c

6

27
) �= 0.
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9. Néron Models

Consider an elliptic curve over Qp

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Qp, ∆ = 4a3 + 27b2 �= 0.

After making a change of variables X �→ X/c2, Y �→ Y/c3, Z �→ Z, we can suppose that
a, b ∈ Zp and ordp(∆) is minimal. We can think of E as defining a curve over Zp, which will
be the best “model” of E over Zp among plane projective curves when p �= 2, 3. However,
when p = 2 or 3 we may be able to get a better model of E over Zp by allowing a more
complicated equation. Moreover, Néron showed that if we allow our models to be curves
over Zp that are not embeddable in P2, then we obtain models that are better in some senses
than any plane model. I’ll attempt to explain what these Néron models are in this section.
Unfortunately, this is a difficult topic, which requires the theory of schemes for a satisfactory
explanation10 and so I’ll have to be very superficial. The only good treatment of Néron
models is in Chapter IV of [S2].

Weierstrass minimal models. As we noted in (1.3), a curve of the form

Y 2 = X3 + aX + b

is always singular in characteristic 2. However, the curve

Y 2 + Y = X3 −X2 − 10X − 20

has good reduction at 2 (and, in fact, at all primes except 11). In general we should allow
equations for E of the form

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

and changes of variables of the form

X = u2X ′ + r

Y = u3Y ′ + su2X ′ + t

with u, r, s, t ∈ Qp and u �= 0. One can attach to such a curve a discriminant
∆(a1, a2, a3, a4a5), which is a complicated polynomial in the ai’s, and which is zero if and
only if E is singular. Moreover, one can choose a change of variables which makes the ai ∈ Zp

and is such that ordp(∆) is minimal. The equation (or rather the curve it defines over Zp) is
called the Weierstrass minimal model of E. If p �= 2, 3, this agrees with the model defined
in the first paragraph above.

The work of Kodaira. Before considering Néron models, we look at an analogous situation,
which was a precursor.

Consider an equation

Y 2Z = X3 + a(T )XZ2 + b(T )Z3, a(T ), b(T ) ∈ C[T ], ∆(T ) = 4a(T )3 + 27b(T )2 �= 0.

We can view this in three different ways:

(a) as defining an elliptic curve E over the field C(T );
(b) as defining a surface S in A1(C)× P2(C);
(c) as defining a family of (possibly degenerate) elliptic curves E(T ) parametrized by T .

10Néron himself didn’t use schemes, but rather invented his own private version of algebraic geometry
over discrete valuation rings, which makes his papers almost unreadable.
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By (c) we mean the following: for each t0 ∈ C we have a curve

E(t0) : Y
2Z = X3 + a(t0)XZ

2 + b(t0)Z
3, a(t0), b(t0) ∈ C,

with discriminate ∆(t0). This is nonsingular, and hence an elliptic curve, if and only if
∆(t0) �= 0. Otherwise, it will have a singularity, and we view it as a degenerate elliptic
curve. Note that the projection map A1(C) × P2(C) → A1(C) induces a map S → A1(C)
whose fibres are the curves E(t). We can view S as a “model” of E over C[T ] (or over
A1(C)). We should choose the equation of E so that ∆(T ) has minimum degree and there
are as few singular fibres as possible.

For the sake of simplicity, we now drop the Z, and consider the equation

Y 2 = X3 + a(T )X + b(T ), a(T ), b(T ) ∈ C[T ],

—strictly, we should work with the family of projective curves.

Let P = (x, y, t) ∈ S(C), and let f(X, Y, T ) = X3 + a(T )X + b(T ) − Y 2. Then P is
singular on E(t) if and only if it satisfies the following equations:

∂f
∂Y

= −2Y = 0
∂f
∂X

= 3X2 + a(T ) = 0.

It is singular in S if on addition it satisfies the equation

∂f

∂T
= a′(T )X + b′(T ) = 0.

Thus, if P is singular in S, then it is singular in its fibre E(t), but the converse is need not
be true.

Example 9.1. (a) Consider the equation

Y 2 = X3 − T.
The origin is singular (in fact, it is a cusp) when regarded as a point on E(0) : Y 2 = X3,
but not when regarded as a point on S : Y 2 = X3 − T . In fact, the tangent plane to S at
the origin is the X, Y -plane, T = 0.

(b) Consider the equation

Y 2 = X3 − T 2.
In this case, the origin is singular when regarded as a point on E(0) and when regarded as
a point on S.

(c) Consider the equation

Y 2 = (X − 1 + T )(X − 1− T )(X + 2)

= X3 − (3 + T 2)X + 2− 2T 2.

The discriminant is

∆(T ) = −324T 2 + 72T 4 − 4T 6.

The curve E(0) is

Y 2 = X3 − 3X + 2 = (X − 1)2(X + 2),
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which has a node at (1, 0). Replace X − 1 in the original equation with X in order to
translate (1, 0, 0) to the origin. The equation becomes

Y 2 = (X + T )(X − T )(X + 3)

= (X2 − T 2)(X + 3)

= X3 + 3X2 − T 2X − 3T 2.

This has surface has a singularity at the origin (because the equation has no linear term).

Kodaira showed (CollectedWorks [51], [52], 1960) that, by blowing up points, and blowing
down curves, etc., it is possible to obtain from the surface

S : Y 2Z = X3 + a(T )XZ2 + b(T )Z3, a(T ), b(T ) ∈ C[T ], ∆[T ] �= 0

a new surface S ′ endowed with a map S ′ → A1 having the following properties:

(a) S ′ is nonsingular;
(b) S ′ regarded as a curve over C(T ) is equal to S regarded as a curve over C(T ) (for the

experts, the maps S → A1 and S ′ → A1 have the same generic fibres);
(c) the fibres E ′(t0) of S ′ over A1(C) are all projective curves; moreover E ′(t0) = E(t0)

if the points of E(t0) are nonsingular when regarded as points on S (for example, if
E(t0) itself is nonsingular);

(d) S ′ has a certain minimality property: if S ′′ is a second surface with the above prop-
erties, then any regular map S ′ → S ′′ is an isomorphism.

Moreover, Kodaira showed that S is unique, and he classified the possible fibres of S ′ → A1.

“Blowing up” a point P in a variety V leaves the variety unchanged except that it replaces
the point P with the projective space of lines through the origin in the tangent space TgtP (V )
to V at P . A curve C in V , when regarded as a point in the blown-up variety, meets the
projective space at the point corresponding to the tangent line to the curve. Even when
V ⊂ Pm, the blown-up variety doesn’t have a natural embedding into a projective space.

Example 9.2. To illustrate the phenomenon of “blowing up”, consider the map

σ : k2 → k2, (x, y) �→ (x, xy).

Its image omits only the points on the Y -axis where Y �= 0. A point in the image is the
image of a unique point in k2 except for (0, 0), which is the image of the whole of the Y -axis.
Thus the map is one-to-one, except that the Y -axis has been “blown down” to a point.

The line

C : Y = αX

has inverse image equal to the union of the Y -axis and the line Y = α. The curve

Y 2 = X3 + αX2

has as inverse image the union of the Y -axis and a nonsingular curve that meets the Y -axis
at the points (0,±√

α), i.e., at the same points that its tangents do.

In the above map, (0, 0) in A2(k) was blown up to an affine line. In a true blowing-up,
it would be replaced by a projective line, and the description of the map would be more
complicated.
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The complete Néron model. Néron proved an analogue of Kodaira’s result for elliptic
curves over Qp. To explain his result, we need to talk about schemes. For the nonexperts, a
scheme E over Zp is simply the object defined by a collection of polynomial equations with
coefficents in Zp. The object defined by the same equations regarded as having coefficients
in Qp is a variety E over Qp called the generic fibre of E/Zp, and the object defined by the
equations with the coefficients reduced modulo p is a variety Ē over Fp called the special
fibre of E/Zp. For example, if E is the scheme defined by the equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, ai ∈ Zp,

then E is the elliptic curve over Qp defined by the same equation, and Ē is the elliptic curve
over Fp

Y 2Z + ā1XY Z + ā3Y Z
2 = X3 + ā2X

2Z + ā4XZ
2 + ā6Z

3, āi ∈ Fp.

Given an elliptic curve E/Qp, Néron constructs a scheme E over Zp having the following
properties:

(a) E is a regular scheme; this means that all the local rings associated with E are regular
local rings (for a variety over an algebraically closed field, this condition is equivalent
to the variety being nonsingular);

(b) the generic fibre of E is the original curve E;
(c) E is proper over Zp; this simply means that both E and Ē are complete curves (this

is a compactness condition: affine curves aren’t complete; projective curves are).
(d) E has a certain minimality property sufficient to determine it uniquely: if E ′ is a

second scheme over Zp having the properties (a), (b), (c), then any regular map
E → E ′ is an isomorphism.

Moreover, Néron classified the possible special fibres, and obtained essentially the same list
as Kodaira.

The complete Néron model has some defects: unlike the Weierstrass minimal model, not
every point in E(Qp) need extend to a point in E(Zp); it doesn’t have a group structure;
it’s special fibre Ē may be singular. All three defects are eliminated by simply removing all
singular points and multiple curves in the special fibre. One then obtains the smooth Néron
minimal model, which however has the defect that it not complete.

Given an elliptic curve E over Qp with now have three models over Zp:

(a) Ew, the Weierstrass minimal model of E;
(b) E, the complete Néron minimal model of E;
(c) E ′, the smooth Néron minimal model of E.

They are related as follows: to get E ′ from E remove all multiple curves and singular points;
when we remove from E ′ all connected components of the special fibre except that containing
O, we obtain the Weierstrass model with the singular point in the closed fibre removed.

Example 9.3. We describe three of the possible eleven different types of models. Some of
the statements below are only valid when p �= 2, 3. We describe the special fibre over Falp
rather than Fp. For example, in (b), over Fp the zero component of G may be a twisted Gm,
and not all n points in the quotient G/G0 need have coordinates in Fp.

(a) For an elliptic curve E with good reduction, all three models are the same.
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(b) For an elliptic curve E which has nodal reduction, and ordp(∆) = n, the special fibres
for the three models are: (a) a cubic curve with a node; (b) n curves, each of genus
0, each intersecting exactly two other of the curves; (c) an algebraic group G such
that the connected component G0 of G containing zero is Gm, and such that G/G0

is a cyclic group of order n.
[[Diagram omitted]]

(c) For an elliptic curve E which has cuspidal reduction and ordp(∆) = 5, the special
fibres for the three models are: (a) a cubic curve with a cusp; (b) five curves of genus
0, one with multiplicity 2, intersecting as below; (b) an algebraic group G whose zero
component is Ga and such that G/G0 is a group of order 4 killed by 2.

[[Diagram omitted.]]

Finally, the mysterious quotient E(Qp)/E
0(Qp) is equal to G(Fp)/G

0(Fp) where G is the
special fibre of the smooth Néron model and G0 is its zero component. In the above three
examples, it is (a) the trivial group; (b) a subgroup of a cyclic group of order n (and equal
to a cyclic group of order n if E has split nodal reduction); (c) a subgroup of (Z/2Z)2.

Summary. [[The top three E’s are Ē’s]]

Minimal Model Weierstrass complete Néron smooth Néron

Plane curve Yes Not always Not always
Regular? Not always Yes Yes
E complete? Yes Yes Not always
E nonsingular? Not always Not always Yes
E a group? Not always Not always Yes
E(Zp) = E(Qp)? Yes Not always Yes

Tate has given an algorithm for determining the Néron model of an elliptic curve.

10. Elliptic Curves over the Complex Numbers

In this section, we review some of the theory of elliptic curves over C.

Lattices and bases. A lattice in C is the subgroup generated by two complex numbers
linearly independent over R: thus

Λ = Zω1 + Zω2.

Since neither ω1 nor ω2 is a real multiple of the other, we can order them so that $(ω1/ω2) >
0. If {ω′

1, ω
′
2} is a second pair of elements of Λ, then

ω′
1 = aω1 + bω2, ω′

2 = cω1 + dω2, a, b, c, d ∈ Z,

that is, (
ω′
1

ω′
2

)
= A

(
ω1
ω2

)
,

with A a 2× 2 matrix with integer coefficients. The pair (ω′
1, ω

′
2) will be a basis for Λ if and

only if A has determinant ±1, and $(ω′
1/ω

′
2) > 0 if and only if detA > 0. Therefore, if we

let SL2(Z) be the group of matrices with integer coefficients and determinant 1, then SL2(Z)
acts transitively on the set of bases (ω1, ω2) for Λ for which $(ω1/ω2) > 0. We have proved
the following statement:
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Proposition 10.1. Let M be the set of pairs of complex numbers (ω1, ω2) such that
$(ω1/ω2) > 0, and let L be the set of lattices in C. Then the map (ω1, ω2) �→ Zω1 + Zω2
induces a bijection

SL2(Z)\M → L.
Here SL2(Z)\M means the set of orbits in M for the action(

a b
c d

)(
ω1
ω2

)
=

(
aω1 + bω2
cω1 + dω2

)
Let H be the complex upper half-plane:

H = {z ∈ C | $(z) > 0}.
Let z ∈ C× act on M by the rule z(ω1, ω2) = (zω1, zω2) and on L by the rule zΛ = {zλ |
λ ∈ Λ}. The map (ω1, ω2) �→ ω1/ω2 induces a bijection M/C× → H. The action of SL2(Z)
on M corresponds to the action (

a b
c d

)
τ =

aτ + b

cτ + d

on H. We have bijections

L/C× ←→ SL2(Z)\M/C× ←→ SL2(Z)\H.
Zτ + Z (τ, 1) τ

For a lattice Λ, the interior of any parallelogram with vertices z0, z0+ω1, z0+ω2, z0+ω1+ω2,
where {ω1, ω2} is a basis for Λ, is called a fundamental domain or period parallelogram D
for Λ. We usually choose D to contain 0.

Quotients of C by lattices. . Let Λ be a lattice in C. Topologically the quotient C/Λ ≈
R2/Z2, which is a one-holed torus (the surface of a donut).

Write π : C → C/Λ for the quotient map. Then C/Λ can be given the structure of a
Riemann surface (i.e., complex manifold of dimension 1) such that a function ϕ : U → C on
an open subset U of C/Λ is holomorphic (resp. meromorphic) if and only if the composite
ϕ ◦ π : π−1(U) → C is holomorphic (resp. meromorphic) in the usual sense. It is the unique
structure for which π is a local isomorphism of Riemann surfaces.

We shall see that, although any two quotients C/Λ, C/Λ′ are homeomorphic, they will be
isomorphic as Riemann surfaces only if Λ′ = zΛ for some z ∈ C.

Doubly periodic functions. Let Λ be a lattice in C. According to the above discussion,
a meromorphic function on C/Λ is simply a meromorphic function f(z) on C such that

f(z + ω) = f(z) for all ω ∈ Λ.

This condition is equivalent to

f(z + ω1) = f(z), f(z + ω2) = f(z)

for {ω1, ω2} a basis for Λ. Such a meromorphic function on C is said to be doubly periodic
for Λ.

Proposition 10.2. Let f(z) be a doubly periodic function for Λ, not identically zero, and
let D be a fundamental domain for Λ such that f has no zeros or poles on the boundary of
D. Then
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(a)
∑
P∈D ResP (f) = 0;

(b)
∑
P∈D ordP (f) = 0;

(c)
∑
P∈D ordP (f) · P ≡ 0 mod Λ.

The first sum is over the points in D where f has a pole, and the other sums are over the
points where it has a zero or pole (and ordP (f) is the order of the zero or the negative of the
order of the pole). Each sum is finite.

Proof. According to the residue theorem,∫
Γ
f(z)dz = 2πi(

∑
P∈D

ResP (f)),

where Γ is the boundary of D. Because f is periodic, the integrals of it over opposite sides of
D cancel, and so the integral is zero. This gives (a). For (b) one applies the residue theorem
to f ′/f , noting that this is again doubly periodic and that ResP (f

′/f) = ordP (f). For (c)
one applies the residue theorem to z · f ′(z)/f(z). This is no longer doubly periodic, but the
integral of it around Γ lies in Λ.

Corollary 10.3. A nonconstant doubly periodic function has at least two poles.

Proof. A holomorphic doubly periodic function is bounded on the closure of any fundamental
domain (by compactness), and hence on the entire plane (by periodicity). It is constant by
Liouville’s theorem. It is impossible for a doubly periodic function to have a single simple
pole in a period parallelogram, because by (a) of proposition the residue at the pole would
have to be zero there, which contradicts the fact that it has a simple pole there.

The holomorphic maps C/Λ → C/Λ′. Let Λ and Λ′ be lattices in C. The map π :
C → C/Λ realizes C as the universal covering space of C/Λ. Since the same is true of
π′ : C → C/Λ′, a continous map ϕ : C/Λ → C/Λ′ such that ϕ(0) = 0 will lift uniquely to a
continuous map ϕ̃ : C → C such that ϕ̃(0) = 0:

C
ϕ̃−→ C

↓ ↓
C/Λ

ϕ−→ C/Λ′

(see, for example, Greenberg, Lectures on Algebraic Topology, 5.1, 6.4). The map ϕ will
be holomorphic (i.e., a morphism of Riemann surfaces) if and only if ϕ̃ is holomorphic.
[Nonexperts can take this as a definition of a holomorphic map ϕ : C/Λ → C/Λ′.]

Proposition 10.4. Let Λ and Λ′ be lattices in C. A complex number α such that αΛ ⊂ Λ′

defines a holomorphic map

[z] �→ [αz] : C/Λ → C/Λ′

sending 0 to 0, and every holomorphic map C/Λ → C/Λ′ is of this form (for a unique α).

Proof. It is obvious that α defines a holomorphic map C/Λ → C/Λ′. Conversely, let ϕ :
C/Λ → C/Λ′ be a holomorphic map such that ϕ(0) = 0, and let ϕ̃ be its unique lifting to a
holomorphic map C → C sending 0 to 0. For any ω ∈ Λ, z �→ ϕ̃(z + ω)− ϕ̃(z) takes values
in Λ′ ⊂ C. But a continuous map from a connected set to a set with the discrete topology
is constant, and so the derivative of this function is zero:

ϕ̃′(z + ω) = ϕ̃′(z).
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Therefore ϕ̃′(z) is doubly periodic. As it is holomorphic, it must be constant, say ϕ̃′(z) = α
for all z. On integrating, we find that ϕ̃(z) = αz + β, and β = ϕ̃(0) = 0.

Corollary 10.5. The Riemann surfaces C/Λ and C/Λ′ are isomorphic if and only if Λ′ =
αΛ for some α ∈ C×.

Proof. This is obvious from the proposition.

The proposition shows that11

Hom(C/Λ,C/Λ′) ∼= {α ∈ C | αΛ ⊂ Λ′},
and the corollary shows that there is a one-to-one correspondence

{C/Λ}/≈ 1:1←→ L/C×.

The Weierstrass ℘ function. Let Λ be a lattice in C. We don’t yet know any nonconstant
doubly periodic functions12 for Λ. When G is a finite group acting on a set S, then it is easy
to construct functions invariant under the action of G : take f to be any function f : S → C,
and define

F (s) =
∑
g∈G
f(gs);

then F (g′s) =
∑
g∈G f(g′gs) = F (s), and so F is invariant (and all invariant functions are of

this form, obviously). When G is not finite, one has to verify that the series converges—in
fact, in order to be able to change the order of summation, one needs absolute conver-
gence. Moreover, when S is a Riemann surface and f is holomorphic, to ensure that F is
holomorphic, one needs that the series converges absolutely uniformly on compact sets.

Now let ϕ(z) be a holomorphic function C and write

Φ(z) =
∑
ω∈Λ
ϕ(z + ω).

Assume that as |z| → ∞, ϕ(z) → 0 so fast that the series for Φ(z) is absolutely convergent
for all z for which none of the terms in the series has a pole. Then Φ(z) is doubly periodic
with respect to Λ; for replacing z by z + ω0 for some ω0 ∈ Λ merely rearranges the terms
in the sum. This is the most obvious way to construct doubly periodic functions; similar
methods can be used to construct functions on other quotients of domains.

To prove the absolute uniform convergence on compact subsets of such series, the following
test is useful.

Lemma 10.6. LetD be a bounded open subset of the complex plane and let c > 1 be constant.
Suppose that ψ(z, ω), ω ∈ Λ, is a function that is meromorphic in z for each ω and which
satisfies the condition: there are constants A and B such that

|ψ(z,mω1 + nω2)| < B(m2 + n2)−c

whenever m2 + n2 > A. Then the series
∑
ω∈Λ ψ(z, ω), with finitely many terms which have

poles in D deleted, is uniformly absolutely convergent in D.

11I use X ≈ Y to mean that X and Y are isomorphic, and X ∼= Y to mean that they are isomorphic by
a canonical (or given) isomorphism.

12For a lattice Λ in Cn, n > 1, there frequently won’t be any nonconstant holomorphic functions on Cn/Λ.
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Proof. That only finitely many terms can have poles in D follows from the condition. To
prove the lemma it suffices to show that, given any ε > 0, there is an integer N such that
S < ε for every finite sum S =

∑ |ψ(z,mω1 + nω2)| in which all the terms are distinct and
each one of them has m2 + n2 ≥ 2N2. Now S consists of eight subsums, a typical member
of which consists of the terms for which m ≥ n ≥ 0. (There is some overlap between these
sums, but that is harmless.) In this subsum we have m ≥ N and ψ < Bm−2c, assuming as
we may that 2N2 > A; and there are at most m+1 possible values of n for a given m. Thus

S ≤
∞∑

m=N

B m−2c(m+ 1) < B1N
2−2c

for a suitable constant B1, and this proves the lemma.

We know from Corollary 10.3 that the simplest possible nonconstant doubly periodic
function is one with a double pole at each point of Λ and no other poles. Suppose f(z)
is such a function. Then f(z) − f(−z) is a doubly periodic function with no poles except
perhaps simple ones at the points of Λ. Hence it must be constant, and since it is an odd
function it must vanish. Thus f(z) is even, and we can make it unique by imposing the
normalization condition f(z) = z−2 + O(z2) near z = 0—it turns out to be convenient to
force the constant term in this expansion to vanish rather than to assign the zeros of f(z).
There is such an f(z)—indeed it is the Weierstrass function ℘(z)—but we can’t define it
by the method at the start of this subsection because if ϕ(z) = z−2, the series Φ(z) is not
absolutely convergent. However, if ϕ(z) = −2z−3, we can apply this method, and it gives
℘′, the derivative of the Weierstrass ℘-function. Define

℘′(z; Λ) = ℘′(z;ω1, ω2) =
∑
ω∈Λ

−2
(z − ω)−3

and

℘(z) =
1

z2
+

∑
ω∈Λ,ω 	=0

(
1

(z − ω)2 − 1

ω2

)
.

They are both meromorphic doubly periodic functions on C, and ℘′ = d℘
dz
.

Eisenstein series. Let Λ be a lattice in C, and consider the sum∑
ω∈Λ, ω 	=0

1

ωn
.

The map ω �→ −ω : Λ → Λ has order 2, and its only fixed point is 0. Therefore Λ \ {0} is a
disjoint union of its orbits, and it follows that the sum is zero if n is odd. We write

Gk(Λ) =
∑

ω∈Λ, ω 	=0

1

ω2k
,

and we let Gk(τ ) = Gk(Zτ + Z), τ ∈ H.

Proposition 10.7. For all integers k ≥ 2, Gk(τ ) converges to a holomorphic function on
H.

Proof. Apply Lemma 10.6.

The functions Gk(Λ) and Gk(τ ) and are called Eisenstein series. Note that Gk(cΛ) =
c−2kGk(Λ) for c ∈ C×.
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The field of doubly periodic functions. Let Λ be a lattice in C. The doubly periodic
functions for Λ form a field, which the next two propositions determine.

Proposition 10.8. There is the following relation between ℘ and ℘′:

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3
where g2 = 60G2(Λ) and g3 = 140G3(Λ).

Proof. We compute the Laurent expansion of ℘(z) near 0. Recall (from Math 115) that for
|t| < 1,

1

1− t = 1 + t+ t2 + · · · .
On differentiating this, we find that

1

(1− t)2 =
∑
n≥1
ntn−1 =

∑
n≥0

(n+ 1)tn.

Hence, for |z| < |ω|,
1

(z − ω)2 − 1

ω2
=

1

ω2

 1(
1− z

ω

)2 − 1

 =
∑
n≥1

(n+ 1)
zn

ωn+2
.

On putting this into the definition of ℘(z) and changing the order of summation, we find
that for |z| < |ω|

℘(z) =
1

z2
+
∑
n≥1

∑
ω 	=0

(n + 1)
zn

ωn+2

=
1

z2
+
∑
k≥1

(2k + 1)Gk+1(Λ)z
2k

=
1

z2
+ 3G2z

2 + 5G3z
4 + · · · .

This last expression contains enough terms to show that the Laurent expansion of

℘′(z)2 − 4℘(z)3 + 60Gs2(Λ)℘(z) + 140G3(Λ)

has no nonzero term in zn with n ≤ 0. Therefore this function is holomorphic at 0 and
takes the value 0 there. Since it is doubly periodic and has no other poles in a suitable
fundamental domain containing 0, we see that it is constant, and in fact zero.

Proposition 10.9. The doubly periodic functions for Λ are precisely the rational functions
of ℘(z) and ℘′(z), i.e., if f is doubly periodic, then there exist F (X, Y ), G(X, Y ) ∈ C[X, Y ],
G �= 0, such that f(z) = F (℘(z), ℘′(z))/G(℘(z), ℘′(z)).

Proof. Omitted.

Proposition 10.8 shows that (X, Y ) �→ (℘(z), ℘′(z)) defines a homomorphism

C[x, y] =df C[X, Y ]/(Y 2 − 4X3 + g2X + g3) → C[℘, ℘′],

where C[℘, ℘′] is the C-algebra of meromorphic functions on C generated by ℘ and ℘′. I
claim13 that the map is an isomorphism. For this, we have to show that a polynomial

13Those who know some commutative algebra will be able to give a simpler proof.
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g(X, Y ) ∈ C[X, Y ] for which g(℘, ℘′) = 0 is divisible by f(X, Y ) =df Y
2 − X3 + g2X + g3.

The theory of resultants (see the end of this section) shows that for any polynomial g(X, Y ),
there exist polynomials a(X, Y ) and b(X, Y ) such that

a(X, Y )f(X, Y ) + b(X, Y )g(X, Y ) = R(X) ∈ C[X]

with degY (b(X, Y )) < degY (f(X, Y )). Hence if g(℘, ℘
′) = 0, then R(℘) = 0, but it is easy

to see that ℘ is transcendental over C (for example, it has infinitely many poles). Therefore
R = 0, and so f(X, Y ) divides b(X, Y )g(X, Y ). Any polynomial with the form of f(X, Y )
is irreducible, and so f(X, Y ) divides either b(X, Y ) or g(X, Y ). Because of the degrees, it
can’t divide b, and so it must divide g.

The isomorphism C[x, y] → C[℘, ℘′] induces an isomorphism of the fields of fractions

C(x, y) → C(℘, ℘′).

Proposition 10.9 shows that C(℘, ℘′) is the field of all double periodic functions for Λ.

The elliptic curve E(Λ). Let Λ be a lattice in C.

Lemma 10.10. The polynomial f(X) = 4X3 − g2(Λ)X − g3(Λ) has distinct roots.
Proof. The function ℘′(z) is odd and doubly periodic, and so

℘′(
ω1
2
) = −℘′(−ω1

2
),= ℘′(−ω1

2
).

Hence ℘′(z) has a zero at ω1/2, and so Propositiion 10.8 shows that ℘(ω1/2) is a root of
f(X). The same argument shows that ℘(ω2/2) and ℘((ω1+ω2)/2) are also roots. It remains
to prove that these three numbers are distinct.

The function ℘(z)− ℘(ω1/2) has a zero at ω1/2, which must be a double zero because its
derivative is also 0 there. Since ℘(z)−℘(ω1/2) has only one (double) pole in a fundamental
domain D containing 0, Proposition 10.2 shows that ω1/2 is the only zero of ℘(z)−℘(ω1/2)
in D, i.e., that ℘(z) takes the value ℘(ω1/2) only at z = ω1/2 within D. In particular,
℘(ω1/2) is not equal to ℘(ω2/2) or ℘((ω1 + ω2)/2).

From the lemma, we see that

E(Λ) : Y 2Z = 4X3 − g2(Λ)XZ2 − g3(Λ)Z3

is an elliptic curve. Recall that c4g2(cΛ) = g2(Λ) and c
6g3(cΛ) = g3(Λ) for any c ∈ C×, and

so cΛ defines essentially the same elliptic curve as Λ.

Proposition 10.11. The map

z �→ (℘(z) : ℘′(z) : 1)
0 �→ (0 : 1 : 0)

: C/Λ → E(Λ)

is an isomorphism of Riemann surfaces.

Proof. It is certainly a well-defined map. The function ℘(z) is 2 : 1 in a period parallelogram
containing 0, except at the points ω1

2
, ω2

2
, ω1+ω2

2
, where it is one-to-one. Since the function

(x : y : 1) �→ x : E(Λ) \ {O} → C has the same property, and both maps have image the
whole of C, this shows that the map in z �→ (℘(z) : ℘′(z) : 1) is one-to-one. Finally, one can
verify that it induces isomorphisms on the tangent spaces.
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The addition formula. Consider ℘(z+z′). It is a doubly periodic function of z, and therefore
it is a rational function of ℘ and ℘′. The next result exhibits the rational function.

Proposition 10.12. The following formula holds:

℘(z + z′) =
1

4

{
℘′(z)− ℘′(z′)
℘(z)− ℘(z′)

}2
− ℘(z)− ℘(z′).

Proof. Let f(z) denote the difference between the left and the right sides. Its only possible
poles (in D) are at 0, or ±z′, and by examining the Laurent expansion of f(z) near these
points one sees that it has no pole at 0 or z, and at worst a simple pole at z′. Since it is
doubly periodic, it must be constant, and since f(0) = 0, it must be identically zero.

Corollary 10.13. The map z �→ (℘(z) : ℘′(z) : 1) : C/Λ → E(Λ) is a homomorphism of
groups.

Proof. The above formula agrees with the formula for the x-coordinate of the sum of two
points on E(Λ). [Let Y = mX+c be the line through the points P = (x, y) and P ′ = (x′, y′)
on the curve Y 2 = 4X3 − g2X − g3. Then the x, x′, and x(P + P ′) are the roots of the
polynomial

(mX + c)2 − 4X3 + g2X + g3,

and so

x(P + P ′) + x+ x′ = m2 =

(
y − y′
x− x′

)2
.]

Classification of elliptic curves over C.

Theorem 10.14. Every elliptic curve E over C is of the form E(Λ) for some lattice Λ.

Proof. This follows from the next two lemmas.

Lemma 10.15. Two elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ k
and

E : Y 2Z = X3 + a′XZ2 + b′Z3, a′, b′ ∈ k
over an algebraically closed field k of characteristic �= 2, 3 are isomorphic if and only if
j(E) = j(E ′).

Proof. According to Theorem 5.3, E and E ′ are isomorphic if and only if there exists a c ∈ k×
such that a′ = c4a and b′ = c6b. Since j(E) = 1728(4a3)

4a3+27b2
, it is clear that E ≈ E ′ =⇒ j(E) =

j(E ′). Conversely, suppose j(E) = j(E ′). Note first that

a = 0 ⇐⇒ j(E) = 0 ⇐⇒ j(E ′) = 0 =⇒ a′ = 0.

Hence we may suppose that a and a′ are both nonzero. After replacing (a, b) with (c4a, c6b)

where c = 4
√

a′
a
we will have that a = a′. Now j(E) = j(E ′) =⇒ b = ±b′. A minus sign can

be removed by a change of variables with c =
√−1.
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For any lattice Λ in C, the curve

E(Λ) : Y 2Z = 4X3 − g2(Λ)XZ2 − g3Z3
has discriminant ∆(Λ) = g2(Λ)

3 − 27g3(Λ)
2 and j-invariant

j(Λ) =
1728g2(Λ)

3

g2(Λ)3 − 27g3(Λ)2
.

For c ∈ C×, g2(cΛ) = c−4g2(Λ) and g3(cΛ) = c−6g3(Λ), and so the isomorphism class of E(Λ)
depends only on Λ up to scaling. Define

j(τ ) = j(Zτ + Z).

Then, for any

(
a b
c d

)
∈ SL2(Z),

j(
aτ + b

cτ + d
) = j(τ ).

Hence j defines a function on the quotient space SL2(Z)\H.

Lemma 10.16. The function j defines an isomorphism SL2(Z)\H → C.

Proof. We omit the proof (and hope to return to it later).

Summary. For any subfield k of C, we have the diagram:

{Elliptic curves/C}/≈ 1:1←→ L/C× 1:1←→ SL2(Z)\H
j−→
≈

C

↑ ↑
{Elliptic curves/k}/≈ j−→ k

The bottom map is surjective, because for any j �= 0, 1728, the curve

Y 2Z = X3 − 27

4

j

j − 1728
XZ2 − 27

4

j

j − 1728

has j-invariant j. The left hand vertical map and the bottom map are injective if k is
algebraically closed.

Aside 10.17. The above picture can be made a little more precise. Consider the isomor-
phism

z �→ (℘(z) : ℘′(z) : 1) : C/Λ → E(C).

Since x = ℘(z) and y = ℘′(z),
dx

y
=
℘′(z)dz
℘′(z)

= dz.

Thus the differential dz on C maps to the differential dx
y

on E(C). Conversely, from a

holomorphic differential ω on E(C) we can obtain an realization of E as a quotient C/Λ as
follows. For P ∈ E(C), consider ϕ(P ) = ∫ P

O ω ∈ C. This is a not well defined because it
depends on the choice of a path from O to P . However, if we choose a Z-basis (γ1, γ2) for
H1(E(C),Z), and set ω1 =

∫
γ1
ω, ω2 =

∫
γ2
ω, then Λ = Zω1 + Zω2 is a lattice in C, and

P �→ ϕ(P ) is an isomorphism E(C) → C/Λ. In this way, we obtain a natural one-to-one
correspondence between L and the set of isomorphism classes of pairs (E, ω) consisting of
an elliptic curve E over C and a holmorphic differential ω on E.
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Torsion points. Frequently, I write Xn = {x ∈ X | nx = 0}. For an elliptic curve E over
C, from E(C) = C/Λ we see that

E(C)n =
1

n
Λ/Λ = {a

n
ω1 +

b

n
ω2 | a, b ∈ Z}/Zω1 + Zω2.

This is a free Z/nZ-module of rank 2. Because of this description over C, torsion points on
elliptic curves are often called division points.

Theorem 10.18. For any elliptic curve E over an algebraically closed field k of character-
istic zero, E(k)n is a free Z/nZ-module of rank 2.

Proof. There will exist an algebraically closed subfield k0 of finite transcendance degree over
Q such that E arises from a curve E0 over k0. Now k0 can be embedded into C, and so we
can apply the next lemma (twice).

Lemma 10.19. Let E be an elliptic curve over an algebraically closed field k, and let Ω be an
algebraically closed field containing k. Then the map E(k) → E(Ω) induces an isomorphism
on the torsion subgroups.

Proof. Let E be the curve Y 2Z = X3+aXZ2+ bZ3. There are inductively defined universal
polynomials ψm(X, Y ) ∈ Z[X, Y ] (depending on a, b), such that for any point P = (x : y : 1)
of E, mP = (Xψ4m − ψm−1ψ2mψm+1 : 1

2
ψ2m : ψ4m). See for example [C2] p133. Therefore

P ∈ E(k)m if and only if ψm(x, y) = 0. Thus this lemma follows from the next.

Lemma 10.20. Let k ⊂ Ω be algebraically closed fields. If F (X, Y ), G(X, Y ) ∈ k[X, Y ] have
no common factor, then any common solution to the equations{

F (X, Y ) = 0
G(X, Y ) = 0

with coordinates in Ω in fact has coordinates in k.

Proof. From the theory of resultants, we know that there exist polynomials a(X, Y ), b(X, Y ),
and R(X) with coefficients in k such that

a(X, Y )F (X, Y ) + b(X, Y )G(X, Y ) = R(X)

and R(x0) = 0 if and only if F (x0, Y ) and G(x0, Y ) have a common zero. In other words,
the roots of R are the x-coordinates of the common zeros of F (X, Y ) and G(X, Y ). Since
R(X) is a polynomial in one variable, its roots all lie in k. Moreover, for a given x0 ∈ k, all
the common roots of F (x0, Y ) and G(x0, Y ) lie in k.

Remark 10.21. (a) Theorem 10.18 holds for elliptic curves over algebraically closed fields
of characteristic p �= 0 if (and only if) n is not divisible by p.

(b) In contrast to E(Qal), the torsion subgroup of E(Q) is quite small. It was conjectured
by Beppo Levi at the International Congress in 1906 and proved by Mazur in 1975 that the
E(Q)tors is isomorphic to one of the following groups:

Z/mZ for m = 1, 2, . . . , 10, 12;
Z/2Z × Z/mZ for m = 2, 4, 6, 8.

The 15 curves in Exercise 8.11 exhibit all possible torsion subgroups (in order). The fact
that E(Q)tors is so much smaller than E(Qal)tors shows that the image of the Galois group
in the automorphism group of E(Qal)tors is large.
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Endomorphisms. A field K of finite degree over Q is called an algebraic number field.
Each α ∈ K satisfies an equation,

αm + a1α
m−1 + · · ·+ am = 0, ai ∈ Q.

If it satisfies such an equation with the ai ∈ Z, then α is said to be an (algebraic) integer of
K. The algebraic integers form a subring OK of K, which is a free Z-module of rank [K : Q].
(Experts in commutative algebra will recognize OK as being the integral closure of Z in K.)

For example, if K = Q[
√
d] with d ∈ Z and square-free, then

OK =

{
Z1 + Z

√
d d �≡ 1 mod 4

Z1 + Z1+
√
d

2
d ≡ 1 mod 4.

Proposition 10.22. Let Λ = Zω1 + Zω2 be a lattice in C with τ = ω1/ω2 ∈ H. The ring
End(C/Λ) = Z unless [Q[τ ] : Q] = 2, in which case R = End(C/Λ) is a subring of Q[τ ] of
rank 2 as a Z-module.

Proof. Let Λ = Zω1 + Zω2 with τ =df ω1/ω2 ∈ H, and suppose that there exists an α ∈ C,
α /∈ Z, such that αΛ ⊂ Λ. Then

αω1 = aω1 + bω2

αω2 = cω1 + dω2,

with a, b, c, d ∈ Z. On dividing through by ω2 we obtain the equations

ατ = aτ + b

α = cτ + d.

As α /∈ Z, c �= 0.

On eliminating α from between the two equations, we find that

cτ 2 + (d − a)τ + b = 0.

Therefore Q[τ ] is of degree 2 over Q.

On eliminating τ from between the two equations, we find that

α2 − (a + d)α + bc = 0.

Therefore α is integral over Z, and hence is contained in the ring of integers of Q[τ ].

Example 10.23. (a) Consider E : Y 2Z = X3 + aXZ2. Then (x : y : z) �→ (−x : iy : z) is
an endomorphism of E of order 4, and so End(E) = Z[i]. Note that E has j-invariant 1728.

(b) Consider E : Y 2Z = X3 + bZ3, and let ρ = e2πi/3. Then (x : y : z) �→ (ρx : y : z) is an
endomorphism of E of order 3 of E. In this case, E has j-invariant is 0.

Aside 10.24. (For the experts.) Recall that a complex number α is said to be algebraic
if it is algebraic over Q, and is otherwise said to be transcendental. There is a general
philosophy that a transcendental meromorphic function f should take transcendental values
at the algebraic points in C, except at some “special” points, where it has interesting “special
values”. We illustrate this for two functions.
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(a) Define e(z) = e2πiz. If z is algebraic but not rational, then e(z) is transcendental. [More
generally, if α and β are algebraic, α �= 0, 1, and β is irrational, then αβ is transcendental—
Hilbert stated this as the seventh of his famous problems, and Gelfond and Schneider proved14

it in 1934. It implies our statement because e(z) = (eπi)2z.]

On the other hand, if z ∈ Q, then e(z) is algebraic—in fact, it is a root of 1, and so Q[e(z)]
is a finite extension of Q with abelian Galois group (see Math 594). It is a famous theorem
(the Kronecker-Weber theorem) that every such extension of Q is contained in Q[e( 1

m
)] for

some m (see Math 776).

Let τ ∈ H be algebraic. If τ generates a quadratic extension of Q, then j(τ ) is algebraic,
and otherwise j(τ ) is transcendental (the second statement was proved by Siegel in 1949).

In fact, when [Q[τ ] : Q] = 2, one can say much more. Assume that Z[τ ] is the ring of
integers in K =df Q[τ ]. Then j(τ ) is an algebraic integer, and

[Q[j(τ )] : Q] = [K[j(τ )] : K] = hK

where hK is the class number of K. Moreover, K[j(τ )] is the Hilbert class field of K (the
largest unramified abelian extension of K).

Appendix: Resultants. Let f(X) = s0X
m + s1X

m−1 + · · · + sm and g(X) = t0X
n +

t1X
n−1 + · · · + tn be polynomials with coefficients in a field k. The resultant Res(f, g) of f

and g is defined to be the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sm
s0 . . . sm
. . . . . .

t0 t1 . . . tn
t0 . . . tn
. . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
There are n rows of s’s and m rows of t’s, so that the matrix is (m+n)× (m+n); all blank
spaces are to be filled with zeros. The resultant is a polynomial in the coefficients of f and
g.

Proposition 10.25. The resultant Res(f, g) = 0 if and only if

(i) both s0 and t0 are zero; or
(ii) the two polyomials have a common root in kal.

Proof. If (i) holds, then the first column of the determinant is zero, and so certainly
Res(f, g) = 0. Suppose that α is a common root of f and g, so that there exist polynomials
f1 and g1 in k

al[X] of degrees m− 1 and n− 1 respectively such that

f(X) = (X − α)f1(X), g(X) = (X − α)g1(X).
From these equations we find that

f(X)g1(X)− g(X)f1(X) = 0. (∗)
14At about the time he stated his problems (1900), Hilbert gave a lecture in which he said that he expected

the Riemann hypothesis to be proved within his lifetime, that Fermat’s last theorem would be proved within
the lifetimes of the youngest members of his audience, but that no one in the audience would see his seventh
problem proved. He was close with Fermat’s last problem.
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On equating the coefficients of Xm+n−1, . . . , X, 1 in (*) to zero, we find that the coefficients
of f1 and g1 are the solutions of a system of m+n linear equations in m+n unknowns. The
matrix of coefficients of the system is the transpose of the matrix

s0 s1 . . . sm
s0 . . . sm
. . . . . .

t0 t1 . . . tn
t0 . . . tn
. . . . . .


The existence of the solution shows that this matrix has determinant zero, which implies
that Res(f, g) = 0.

Conversely, suppose that Res(f, g) = 0 but neither s0 nor t0 is zero. Because the above
matrix has determinant zero, we can solve the linear equations to find polynomials f1 and
g1 satisfying (*). If α is a root of f , then it must also be a root of f1 or g. If the former,
cancel X − α from the left hand side of (*) and continue. As deg f1 < deg f , we eventually
find a root of f that is not a root of f1, and so must be a root of g.

Let c1, . . . , cm+n be the columns of the above matrix. Then

Xm−1f(X)
Xm−2f

...
f(X)

Xn−1g(X)
...

g(X)


= Xm+n−1c0 + · · ·+ 1cm+n,

and so
Res(f, g) =df det(c0, . . . , cm+n) = det(c0, · · · , cm+n−1, c)

where c is the vector on the left of the above equation. On expanding out this last determi-
nant, we find that

Res(f, g) = a(X)f(X) + b(X)g(X)

where a(X) and b(X) are polynomials of degrees ≤ n− 1 and ≤ m− 1 respectively.

Remark 10.26. If the f(X) and g(X) have coefficients in an integral domain R, for exam-
ple, Z or k[Y ], then Res(f, g) ∈ R, and the polynomials a(X) and b(X) have coefficients in
R.

For a monic polynomial f(X) = Xm+ · · ·+ sm, the resultant of f(X) and f ′(X) is called
the discriminant of f (apart possibly for a minus sign).

The resultant of homogeneous polynomials F (X, Y ) = s0X
m + s1X

m−1Y + · · · + smY m

and G(X, Y ) = t0X
n + t1X

n−1Y + · · ·+ tnY n is defined as for inhomogeneous polynomials.

Proposition 10.27. The resultant Res(F,G) = 0 if and only if F and G have a nontrivial
zero in P1(kal).

Proof. The nontrivial zeros of F (X, Y ) in P1(kal) are of the form:

(i) (a : 1) with a a root of F (X, 1), or
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(ii) (1 : 0) in the case that s0 = 0.

Since a similar statement is true for G(X, Y ), this proposition is a restatement of the previous
proposition.

Clearly, the statement is more pleasant in the homogeneous case.

Maple can find the resultant of two polynomials in one variable: for example, entering
“resultant((x+ a)5, (x+ b)5, x)” gives the answer (−a+ b)25. Explanation: the polynomials
have a common root if and only if a = b, and this can happen in 25 ways.

Aside 10.28. There is a geometric interpretation of the last proposition. Take k to be
algebraically closed, and regard the coefficients of F and G as indeterminants. Let V be the
subset of Am+n+2 × P1 where both F (s0, . . . , sm;X, Y ) and G(t0, . . . , tn;X, Y ) vanish. The
proposition says that the projection of V on Am+n+2 is the set where Res(F,G), regarded
as a polynomial in the si and ti, vanishes. In other words, the proposition tells us that
the projection of the particular Zariski-closed set V is the Zariski-closed set defined by the
resultant of F and G.

Elimination theory does this in general. Given polynomials Pi(T1, . . . , Tm;X0, . . . , Xn),
homogeneous in the Xi, it provides an algorithm for finding polynomials Rj(T1, . . . , Tn) such
that the Pi(a1, . . . , am;X0, . . . , Xn) have a common zero if and only if Rj(a1, . . . , an) = 0
for all j. See, for example, Cox et al, Ideals, Varieties, and Algorithms, p388.

Exercise 10.29. (a) Prove that, for all z1, z2,∣∣∣∣∣∣∣
℘(z1) ℘′(z1) 1
℘(z2) ℘′(z2) 1

℘(z1 + z2) −℘′(z1 + z2) 1

∣∣∣∣∣∣∣ = 0.

(b) Compute sufficiently many initial terms for the Laurent expansions of ℘′(z), ℘′(z)2,
etc., to verify the equation in Proposition 10.8.

11. The Mordell-Weil Theorem: Statement and Strategy

We state the Mordell-Weil (or finite basis) theorem, and outline the strategy for proving
it.

Theorem 11.1 (Mordell-Weil). For any elliptic curve E over a number field K, E(K) is
finitely generated.

The theorem was proved by Mordell (1922) when K = Q, and for all number fields by
Weil in his thesis (1928). Weil in fact proved a much more general result, namely, he showed
that for any nonsingular projective curve C over a number field K, the group Pic0(C) is
finitely generated. As we noted in (4.7), for an elliptic curve C(K) = Pic0(C). The theorem
was proved for all abelian varieties over number fields by Taniyama in 1954.

The first step in proving the theorem is to prove a weaker result:

Theorem 11.2 (Weak Mordell-Weil Theorem). For any elliptic curve E over a num-
ber field K and any integer n, E(K)/nE(K) is finite.
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Clearly, for an abelian group M ,

M finitely generated =⇒ M/nM finite for all n > 1,

but the converse statement is false. For example, Q regarded as a group under addition has
the property that Q = nQ and so Q/nQ = 0, but the elements of any finitely generated
subgroup of Q will have bounded denominators, and Q is not finitely generated.

We assume now that E(Q)/2E(Q) is finite, and sketch how one deduces that E(Q) is
finitely generated. Recall that the height of a point P ∈ P2(Q) is H(P ) = max(|a|, |b|, |c|)
where P = (a : b : c) and a, b, c have been chosen to be integers with no common factor. For
points P and Q on an elliptic curve E, not necessarily distinct, we shall relate H(P +Q) to
H(P ) and H(Q).

Let P1, . . . , Ps ∈ E(Q) be a set of representatives for the elements of E(Q)/2E(Q). Then
any Q ∈ E(Q) can be written

Q = Pi + 2Q′

for some i and for some Q′ ∈ E(Q). We shall show that, H(Q′) < H(Q), at least provided
H(Q) is greater than some fixed constant H0. If H(Q

′) > H0, we can repeat the argument
for Q′, etc., to obtain

Q = Pi + 2Q′ = Pi + 2(Pi′ + 2Q′′) = · · · .
Let Q1, . . . , Qt be the set of points in E(Q) with height < H0. Then the above equation
exhibits Q as a linear combination of Pi’s plus a Qj, and so the Pi’s and Qj’s generate E(Q).

Remark 11.3. The argument in the last paragraph is called “proof by descent”. Fermat
is generally credited with originating this method in his proof of Fermat’s last theorem for
the exponent 4 (which was short enough to fit in the margin). However, in some sense it
goes back to the Greeks. Consider the proof that Y 2 = 2X2 has no solution in integers.
Define the height of a pair (m,n) of integers to be max(|m|, |n|). One proves that if (m,n)
is one solution to the equation, then there exists another of smaller height, which leads to a
contradiction.

12. Group cohomology

In proving the weak Mordell-Weil theorem, and also later in the study of the Tate-
Shafarevich group, we shall use a little of the theory of the cohomology of groups.

Cohomology of finite groups. Let G be a finite group. A G-module is an abelian group
M together with an action of G, i.e., a map G×M →M such that

(a) σ(m+m′) = σm+ σm′ for all σ ∈ G, m,m′ ∈M ;
(b) (στ )(m) = σ(τm) for all σ, τ ∈ G, m ∈M ;
(c) 1m = m for all m ∈M .

Thus, to give an action of G on M is the same as to give a homomorphism G → Aut(M)
(automorphisms of M as an abelian group).

Example 12.1. Let L be a finite Galois extension of a field K with Galois group G, and
let E be an elliptic curve over K. Then L, L×, and E(L) are all G-modules.
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Let M be a G-module. We define

H0(G,M) = MG = {m ∈M | σm = m, all σ ∈ G}.
For the G-modules in (12.1),

H0(G,L) = K, H0(G,L×) = K×, and H0(G,E(L)) = E(K).

A crossed homomorphism is a map f : G→M such that

f(στ ) = f(σ) + σf(τ ).

Note that the condition implies that f(1) = f(1 · 1) = f(1) + f(1), and so f(1) = 0. For any
m ∈M , we obtain a crossed homomorphism by putting

f(σ) = σm−m, all σ ∈ G.
Such a crossed homomorphism is said to be principal. The sum of two crossed homomor-
phisms is again a crossed homomorphism, and the sum of two principal crossed homomor-
phisms is again principal. Thus we can define

H1(G,M) =
{crossed homomorphisms}

{principal crossed homomorphisms} .

There are also cohomology groups Hn(G,M) for n > 1, but we won’t need them.

Example 12.2. If G acts trivially on M , i.e., σm = m for all σ ∈ G and m ∈ M , then a
crossed homomorphism is simply a homomorphism, and every principal crossed homomor-
phism is zero. Hence H1(G,M) = Hom(G,M).

Proposition 12.3. Let L be a finite Galois extension of K with group G; then H1(G,L×) =
0, i.e., every crossed homomorphism G→ L× is principal.

Proof. Let f be a crossed homomorphism G→ L×. In multiplicative notation, this means,

f(στ ) = f(σ) · σ(f(τ )), σ, τ ∈ G,
and we have to find a γ ∈ L× such that f(σ) = σγ/γ for all σ ∈ G. Because the f(τ ) are
nonzero, Dedekind’s theorem on the independence of characters (see Math 594) implies that∑

f(τ )τ : L→ L

is not the zero map, i.e., that there exists an α ∈ L such that

β =
∑
τ∈G
f(τ )τα �= 0.

But then, for σ ∈ G,
σβ =

∑
τ∈G
σ(f(τ )) ·στ (α) = ∑

τ∈G
f(σ)−1 · f(στ ) ·στ (α) = f(σ)−1 ∑

τ∈G
f(στ )στ (α) = f(σ)−1β,

which shows that f(σ) = β/σβ = σ(β−1)/β−1.

Proposition 12.4. For any exact sequence of G-modules

0 →M → N → P → 0,

there is a canonical exact sequence

0 → H0(G,M) → H0(G,N) → H0(G,P )
δ−→ H1(G,M) → H1(G,N) → H1(G,P )
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Proof. The map δ is defined as follows. Let p ∈ PG. There exists an n ∈ N mapping
to p, and σn − n ∈ M for all σ ∈ G. The map σ �→ σn − n : G → M is a crossed
homomorphism, whose class we define to be δ(p). Another n′ mapping to p gives rise to a
crossed homomorphism differing from the first by a principal crossed homomorphism, and
so δ(p) is well-defined. The rest of the proof is routine.

Let H be a subgroup of G. The restriction map f �→ f |H defines a homomorphism
Res : H1(G,M) → H1(H,M).

Proposition 12.5. If G has order m, then m kills H1(G,M).

Proof. In general, if H is a subgroup of G of index m, then there exists a homomorphism
Cor : H i(H,M) → H i(G,M) such that the composite Res ◦Cor is multiplication by m. The
proposition is proved by taking H = 1.

Remark 12.6. Let H be a normal subgroup of a group G, and letM be a G-module. Then
MH is a G/H-module, and a crossed homomorphism f : G/H → MH defines a crossed
homomorphism G→M by composition:

G · · · → M
↓ ∪
G/H

f−−→ MH .

In this way we obtain an “inflation” homomorphism

Inf : H1(G/H,MH ) → H1(G,M),

and one verifies easily that the sequence

0 → H1(G/H,MH )
Inf−→ H1(G,M)

Res−−→ H1(H,M)

is exact.

Cohomology of infinite Galois groups. Let k be a perfect field, and let kal be an algebraic
closure of k. The automorphisms of kal fixing the elements of k form a group G, which
when endowed with the topology for which the open subgroups are those fixing some finite
extension of k, is called the Galois group of kal over k. The group G is compact, and so any
open subgroup of G is of finite index. Infinite Galois theory says that the intermediate fields
K, k ⊂ K ⊂ kal, are in natural one-to-one correspondence with the closed subgroups of
G. Under the correspondence intermediate fields of finite degree over k correspond to open
subgroups of G.

A G-module M is said to be discrete if the map G × M → M is continuous when M
is given the discrete topology and G is given its natural topology. This is equivalent to
requiring that

M = ∪HMH , H open in G,

i.e., to requiring that every element of M is fixed by the subgroup of G fixing some finite
extension of k. For example,M = kal,M = kal×, andM = E(kal) are all discrete G-modules
because

kal = ∪K, kal = ∪K×, and E(kal) = ∪E(K)

where, in each case, the union runs over the finite extensions K of k contained in kal.
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For an infinite Galois group G, we define H1(G,M) to be the group of continuous crossed
homomorphisms f : G → M modulo the subgroup of principal crossed homomorphisms.
With this definition

H1(G,M) = lim−→HH
1(G/H,MH )

where H runs through the open normal subgroups of G. Explicitly, this means that:

(a) H1(G,M) is the union of the images of the inflation maps Inf : H1(G/H,MH ) →
H1(G,M), H an open normal subgroup of G;

(b) an element γ ∈ H1(G/H,MH ) maps to zero in H1(G,M) if and only if it maps to
zero H1(G/H ′,MH ′

) for some open normal subgroup H ′ of G contained in H.

In particular, the group H1(G,M) is torsion.

Example 12.7. (a) Proposition 12.3 shows that

H1(G, kal×) = lim−→HH
1(Gal(K/k), K×) = 0.

(b) For a field L, let µn(L) = {ζ ∈ L× | ζn = 1}. From the exact sequence

1 → µn(k
al) → kal× n−→ kal× → 1

we obtain an exact sequence of cohomology groups

1 → µn(k) → k× n−→ k× → H1(G, µn(k
al) → 1,

and hence a canonical isomorphism H1(G, µn(k
al))

≈−→ k×/k×n. Note that for k = Q,
Q×/Q×n is infinite if n > 1. For example, the numbers

(−1)ε(∞) ∏
p prime

pε(p),

where ε(p) = 0 or 1 and all but finitely many are zero, form a set of representatives for the
elements of Q×/Q×2, which is therefore an infinite-dimensional vector space over F2.

(c) If G acts trivially on M , then H1(G,M) is the set of continuous homomorphisms
G→ M . This set can be identified with the set of pairs (K,α) consisting of a finite Galois
extension K of k contained in kal and an injective homomorphism α : Gal(K/k) →M .

For an elliptic curve E over k, we abbreviate H i(Gal(kal/k), E(kal)) to Hi(k, E).

Now consider an elliptic curve E over Q. Let Qal be the algebraic closure of Q in C, and
choose an algebraic closure Qal

p for Qp. The embedding Q ↪→ Qp extends to an embedding

Qal ↪→ Qal
p ,

Qal ↪→ Qal
p

↑ ↑
Q ↪→ Qp.

The action of Gal(Qal
p /Qp) on Qal ⊂ Qal

p defines an inclusion

Gal(Qal
p /Qp) ↪→ Gal(Qal/Q).

Hence any crossed homomorphism

Gal(Qal/Q) → E(Qal)

induces (by composition) a crossed homomorphism

Gal(Qal
p /Q) → E(Qal

p ).
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In this way, we obtain a homomorphism

H1(Q, E) → H1(Qp, E)

that (slightly surprisingly) is independent of the choice of the embedding Qal ↪→ Qal
p . A

similar remark applies to the cohomology groups of µn and En. Later we’ll give a more
natural interpretation of these “localization” homomorphisms.

13. The Selmer and Tate-Shafarevich groups

Lemma 13.1. For any elliptic curve E over an algebraically closed field k and any integer
n, the map n : E(k) → E(k) is surjective.

Proof. The simplest proof uses algebraic geometry. The map of varieties n : E → E has
finite fibres (because E(k)n is finite and it is a homomorphism) and has Zariski-closed image
(because E is complete) of dimension one (because its fibres have dimension 0). Hence it is
surjective as a morphism of algebraic varieties.

Alternatively, let P = (x : y : 1) ∈ E(k). To find a pointQ = (x′ : y′ : 1) such that nQ = P
one has to solve a pair of polynomial equations in the variables X, Y . In characteristic zero,
these equations can’t be inconsistent, because n : E(C) → E(C) is surjective, and so, by the
Hilbert Nullstellensatz, they have a solution in k. In characteristic p one has to work a little
harder.

From the lemma we obtain an exact sequence

0 → En(Q
al) → E(Qal)

n−→ E(Qal) → 0

and a cohomology sequence

0 → En(Q) → E(Q)
n−→ E(Q) → H1(Q, En) → H1(Q, E)

n−→ H1(Q, E),

from which we extract the sequence

0 → E(Q)/nE(Q) → H1(Q, En) → H1(Q, E)n → 0.

Here, as usual, H1(Q, E)n is the group of elements in H1(Q, E)n killed by n. If H1(Q, En)
were finite, then we could deduce that E(Q)/nE(Q) is finite, but unfortunately, it isn’t.
Instead, we proceed as follows. When we consider E as an elliptic curve over Qp we obtain
a similar exact sequence, and there is a commutative diagram:

0 → E(Q)/nE(Q) → H1(Q, En) → H1(Q, E)n → 0
↓ ↓ ↓

0 → E(Qp)/nE(Qp) → H1(Qp, En) → H1(Qp, E)n → 0.

We want replace H1(Q, En) by a subset that contains the image of E(Q)/nE(Q) but which
we’ll be able to prove finite. We do this as follows: if γ ∈ H1(Q, En) comes from an element
of E(Q), then certainly its image γp in H

1(Qp, En) comes from an element of E(Qp). This
suggests defining15

S(n)(E/Q) = {γ ∈ H1(Q, En) | ∀p, γp comes from E(Qp)}
= Ker(H1(Q, En) →

∏
p

H1(Qp, E)).

15In the definitions of both the Selmer and Tate-Shafarevich groups, we should require that the elements
become zero also in H1(R, E). We ignore this for the present.
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The group S(n)(E/Q) is called the Selmer group. In the same spirit, we define16 the Tate-
Shafarevich group to be

TS(E/Q) = Ker(H1(Q, E) → ∏
p

H1(Qp, E)).

It is a torsion group. Later we shall give a geometric interpretation of TS(E/Q) which shows
that it provides a measure of the failure of the Hasse principle for curves of genus 1. One can
similarly define Selmer and Tate-Shafarevich groups for elliptic curves over number fields.

The next lemma is as trivial to prove as it is useful.

Lemma 13.2. From any pair of maps of abelian groups (or modules etc.)

A
α−→ B

β−→ C

there is an exact sequence

0 → Ker(α) → Ker(β ◦ α) α−→ Ker(β) → Coker(α) → Coker(β ◦ α) → Coker(β) → 0.

When we apply the lemma to the maps

H1(Q, En) → H1(Q, E)n →∏
p

H1(Qp, E)n,

we obtain the fundamental exact sequence

0 → E(Q)/nE(Q) → S(n)(E/Q) → TS(E/Q)n → 0.

We shall prove E(Q)/nE(Q) to be finite by showing that S(n)(E/Q) is finite.

14. The Finiteness of the Selmer Group

Theorem 14.1. For any elliptic curve E over a number field L and any integer n, the
Selmer group S(n)(E/L) is finite (and, in fact, computable).

Lemma 14.2. Let E be an elliptic curve over Qp with good reduction, and let n be an integer
not divisible by p. A point P ∈ E(Qp) is of the form nQ for some Q ∈ E(Qp) if and only if
P̄ ∈ E(Fp) is of the form nQ̄ for some Q̄ ∈ E(Fp).
Proof. Clearly P = nQ =⇒ P̄ = nQ̄. For the converse, we make use of the filtration
defined in Section 7:

E(Qp) ⊃ E1(Qp) ⊃ · · · ⊃ En(Qp) ⊃ En+1(Qp) ⊃ · · · ,
E(Qp)/E

1(Qp) ∼= Ē(Fp), En(Qp)/E
n+1(Qp) ∼= Fp.

By hypothesis there exists a Q0 ∈ E(Qp) such that

nQ0 ≡ P mod E1(Qp).

Consider P − nQ0 ∈ E1(Qp). Because E
1(Qp)/E

2(Qp) ≈ Fp and p doesn’t divide n, multi-
plication by n is an isomorphism on E1(Qp)/E

2(Qp). Therefore there exists a Q1 ∈ E1(Qp)
such that

P − nQ0 = nQ1 mod E2(Qp).

16The name, I believe, is due to Cassels, who certainly knows the alphabet. Recently, it has become
fashionable to reverse the order of the names. In the absence of an argument for doing this, I prefer to follow
Cassels. In the original, the initial Russian letter of Shafarevich was used for TS.
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Continuing in this fashion, we find a sequence Q0, Q1, . . . of points in E(Qp) such that

Qi ∈ Ei(Qp), P − n
m∑
i=0

Qi ∈ Em+1(Qp).

The first condition implies that
∑
Qi converges to a point in E(Qp) (recall that E(Qp) is

compact), and the second condition implies that its limit Q has the property that P =
nQ.

We now need a result from algebraic number theory.

Lemma 14.3. For any finite extension k of Fp, there exists an extension K of Qp with the
following properties:

(a) [K : Qp] = [k : Fp];
(b) the integral closure R of Zp in K is a principal ideal domain with p as its only prime

element (up to associates), and R/pR = k.

Proof. Omitted.

The field K in the lemma is unique (up to a unique isomorphism inducing the identity
map on the residue fields). It is called the unramified extension of Qp with residue field k.

Because R is a principal ideal domain with p as its only prime element and K is the field of
fractions of R, every element α in K can be written uniquely in the form upm with u ∈ R×.
Define ordp(α) = m. Then ordp is a homomorphism K× → Z extending ordp : Q× → Z.

Remark 14.4. Let K ⊃ R→ k be as in the lemma. Then pR is the unique maximal ideal
of R, and Hensel’s lemma (Theorem 2.8) holds for R, and so all the roots of Xq − X in k
lift to R. Therefore, K contains the splitting field of Xq −X, and, in fact, is equal to it.

The theory in Section 7 holds, word for word, with Qp replaced by an unramified
extension17 K, except that now

E(K)/E1(K) ∼= Ē(k), En(K)/En+1(K) ∼= k.
Therefore, Lemma 14.2 is also valid with Qp replaced by K.

Consider an elliptic curve E over Qp and an n satisfying the hypotheses of Lemma 14.2.
Let P ∈ E(Qp). According to Lemma 14.2, P = nQ for some Q with coordinates in a field
K ⊃ Qp, which we may choose to be of finite degree over Qp, and which (the generalization
of) (14.2) allows us to take to be unramified over Qp. We have proved:

Lemma 14.5. Let E and n satisfy the hypotheses of Lemma 14.2, and let P ∈ E(Qp). Then
there exists a finite unramified extension K of Qp such that P ∈ nE(K).

Proposition 14.6. Let E be an elliptic curve over Q, and let T be the set of primes dividing
2n∆. For any γ ∈ S(n)(Q) and any p /∈ T , there exists a finite unramified extension K of
Qp such that γ maps to zero in H

1(K,En).

17In fact, it holds even for a ramified extension.
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Proof. From the definition of the Selmer group, we know that there exists a P ∈ E(Qp)
mapping to γp ∈ H1(Qp, En). Since p does not divide 2∆, E has good reduction at p, and so
there is an unramified extension K of Qp such that P ∈ nE(K). Now the following diagram
shows that γ maps to zero in H1(K,En):

E(Q)
n−→ E(Q) → H1(Q, En)

↓ ↓ ↓
E(Qp)

n−→ E(Qp) → H1(Qp, En)
↓ ↓ ↓

E(K)
n−→ E(K) → H1(K,En).

Proof of the finiteness of the Selmer group in a special case. We prove that
S(2)(E/Q) is finite in the case that the points of order 2 on E have coordinates in Q.
This condition means that the equation for E has the form:

Y 2Z = (X − αZ)(X − βZ)(X − γZ), α, β, γ ∈ Q.

It implies that
E2(Q

al) = E2(Q) ≈ (Z/2Z)2 = (µ2)
2,

all with the trivial action of Gal(Qal/Q), and so

H1(Q, E2) ≈ H1(Q, µ2)
2 = (Q×/Q×2)2.

Let γ ∈ S(2)(E/Q) ⊂ H1(Q, E2). For any prime p0 not dividing 2∆, there exists a finite
unramified extension K of Qp0 such that γ maps to zero under the vertical arrows:

H1(Q, E2) ≈ (Q×/Q×2)2

↓ ↓
H1(K,E2) ≈ (K×/K×2)2.

Suppose
γ ↔ ((−1)ε(∞)∏ pε(p), (−1)ε′(∞)∏ pε

′(p)), 0 ≤ ε(p), ε′(p) ≤ 1.

Now
ordp0

(
(−1)ε(∞)∏ pε(p)

)
= ε(p0),

and so if (−1)ε(∞)∏ pε(p) is a square in K, then ε(p0) = 0. Therefore the only p that can
occur in the factorizations are those dividing 2∆. This allows only finitely many possibilities
for γ.

Remark 14.7. It is possible to prove that E(Q)/2E(Q) is finite in this case without men-
tioning cohomology groups. Consider an elliptic curve

Y 2Z = (X − αZ)(X − βZ)(X − γZ), α, β, γ ∈ Z.

Define ϕα : E(Q)/2E(Q) → Q×/Q×2 by

ϕα((x : y : z)) =


(x/z − α)Q×2 z �= 0, x �= αz;
(α − β)(α− γ)Q× z �= 0, x = αz
Q× (x : y : z) = (0 : 1 : 0).

One can prove directly that ϕα is a homomorphism, that the kernel of (ϕα, ϕβ) : E(Q) →
(Q×/Q×2)2 is 2E(Q), and that ϕα(P ) and ϕβ(P ) are represented by ± a product of primes
dividing 2∆ (see [Kn] pp85–91).



ELLIPTIC CURVES 63

Proof of the finiteness of the Selmer group in the general case. In the above proof
we made use of the following facts:

(a) Q contains a primitive square root of 1;
(b) E(Q)2 = E(Q

al)2;
(c) for any finite set T of prime numbers, the kernel of

r �→ (ordp(r) mod 2) : Q×/Q×2 → ⊕
p/∈T

Z/2Z

is finite.

For some finite extension L of Q, L will contain a primitive nth root of 1 and E(L) will
contain all the points of order n on E(Qal). The next lemma shows that, in order to prove
that S(n)(E/Q) is finite, it suffices to prove that S(n)(E/L) is finite.

Lemma 14.8. For any finite Galois extension L of Q and any n, the kernel of

S(n)(E/Q) → S(n)(E/L)

is finite.

Proof. Since S(n)(E/Q) and S(n)(E/L) are subgroups of H1(Q, En) and H
1(L,En) respec-

tively, it suffices to prove that the kernel of

H1(Q, En) → H1(L,En)

is finite. But (cf. 12.6), this kernel is H1(Gal(L/Q), En(L)), which is finite because both
Gal(L/Q) and En(L) are finite.

It remains to consider (c). The proof of its analogue for L requires the three fundamental
theorems in any course on algebraic number theory. We review their statements.

Review of algebraic number theory. In the following, L is a finite extension of Q and R is
the ring of all algebraic integers in L (see p53).

Every element of R is a product of irreducible (i.e., “unfactorable”) elements, but this
factorization may not be unique. For example, in Z[

√−5] we have
6 = 2 · 3 = (1 +

√−5)(1− √−5)
and 2, 3, 1+

√−5, 1−√−5 are irreducible with no two associates. The idea of Kummer and
Dedekind to remedy this problem was to enlarge the set of numbers with “ideal numbers”,
now called ideals, to recover unique factorization. For ideals a and b, define

ab = {∑ aibi | ai ∈ a, bi ∈ b}.
It is again is an ideal.

Theorem 14.9 (Dedekind). Every ideal in R can be written uniquely as a product of prime
ideals.

For example, in Z[
√−5],

(6) = (2, 1 +
√−5)(2, 1− √−5)(3, 1 +√−5)(3, 1− √−5).
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For an element a ∈ R and a prime ideal p in R, let ordp(a) be the exponent of p in the
unique factorization of the ideal (a), so that

(a) =
∏
p

pordp(a).

For x = a
b
∈ L, define ordp(x) = ordp(a)− ordp(b). The ideal class group C of R is defined

to be the cokernel of the homomorphism

L× → ⊕
p⊂R,p prime Z → C → 0

x �→ (ordp(x)).

It is 0 if and only if R is a principal ideal domain, and so C can be regarded as giving a
measure of the failure of unique factorization of elements in R.

Theorem 14.10 (Finiteness of the class number). The ideal class group C is finite.

We next need to understand the group U of units in R. For R = Z, U = {±1}, but
already for R = Z[

√
2], U is infinite because

√
2 + 1 is a unit in Z[

√
2]. One can show that

Z[
√
2]× = {±(1 +√

2)n | n ∈ Z} ≈ Z/2Z ⊕ Z.

Theorem 14.11 (Dedekind unit theorem). The group U of units of R is finitely gener-
ated.

In fact, the full theorem gives a formula for the rank of U .

As in any commutative ring, a is a unit in R if and only if (a) = R. In our case, this is
equivalent to saying that ordp(a) = 0 for all prime ideals p, and so we have an exact sequence

0 → U → L× → ⊕pZ → C → 0

with U finitely generated and C finite.

The fundamental theorems of algebraic number theory show, more generally, that, when
T is a finite set of prime ideals in L, the groups UT and CT defined by the exactness of

0 → UT → L× a →(ordp(a))−−−−−−−→ ⊕p/∈TZ → CT → 0

are, respectively, finitely generated and finite.

Completion of the proof of the finiteness of the Selmer group.

Lemma 14.12. Let N be the kernel of

a �→ (ordp(a) mod n) : Ker(L×/L×n) → ⊕p/∈TZ/nZ).

Then there is an exact sequence

0 → UT /U
n
T → N → (CT )n

Proof. Let α ∈ N . Then n|ordp(α) for all p /∈ T , and so we can map α to the class c of

(ordp(α)
n

) in CT . Clearly nc = 0, and any element of CT killed by n arises in this way. If
c = 0, then there exists a β ∈ L× such that ordp(β) = ordp(α)/n for all p. Now α/βn lies in
UT , and is well-defined up to an element of UnT .

Now the argument used in the special case shows that S(n)(E/L) is finite.
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Remark 14.13. The above proof of the finiteness of the Selmer group is taken from my
book, Etale Cohomology, p133. It is simpler than the standard proof (see [S1] p190–196)
which unnecessarily “translate[s] the putative finiteness of E(K)/mE(K) into a statement
about certain field extensions of K.”

15. Heights

Let P = (a0 : . . . : an) ∈ Pn(Q). We shall say that (a0 : . . . : an) is a primitive
representative for P if

ai ∈ Z, gcd(a0, . . . , an) = 1.

The height H(P ) of P is then defined to be

H(P ) = max
j

|ai|.

Here | ∗ | is the usual absolute value. The logarithmic height h(P ) of P is defined to be
logH(P ).

Heights on P1. Let F (X, Y ) and G(X, Y ) be homogeneous polynomials of degree m in
Q[X, Y ], and let V (Q) be the set of their common zeros. Then F and G define a map

ϕ : P1(Q) \ V (Q) → P1(Q), (x : y) �→ (F (x, y) : G(x, y)).

Proposition 15.1. If F (X, Y ) and G(X, Y ) have no common zero in P1(Qal), then there
exists a constant B such that

|h(ϕ(P ))−mh(P )| ≤ B, all P ∈ P1(Q).

Proof. We may suppose that F and G have integer coefficients. Let (a : b) be a primitive rep-
resentative for P . Then, for a monomial H(X, Y ) = cXiY m−i, |H(a, b)| ≤ |c|max(|a|m, |b|m),
and so

|F (a, b)|, |G(a, b)| ≤ C (max(|a|, |b|)m
with

C = (m+ 1)max(|coeff. of F or G|).
Now

H(ϕ(P )) ≤ max(|F (a, b)|, |G(a, b)|)≤ C(max(|a|, |b|)m = C ·H(P )m.
On taking logs, we obtain the inequality

h(ϕ(P )) ≤ mh(P ) + logC.

The problem with proving a reverse inequality is that F (a, b) and G(a, b) may have a large
common factor, and so the first inequality in the second last equation may be strict. We use
the hypothesis that F and G have no common zero in Qal to limit this problem.

Let R be the resultant of F and G—the hypothesis says that R �= 0. Consider
Y −mF (X, Y ) = F (X

Y
, 1) and Y −mG(X, Y ) = G(X

Y
, 1). When regarded as polynomials in the

single variable X
Y
, F (X

Y
, 1) and G(X

Y
, 1) have the same resultant as F (X, Y ) and G(X, Y ),

and so (see p55), there are polynomials U(X
Y
), V (X

Y
) ∈ Z[X

Y
] of degree m− 1 such that

U(
X

Y
)F (
X

Y
, 1) + V (

X

Y
)G(
X

Y
, 1) = R.
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On multiplying through by Y 2m−1 and renaming Y m−1U(X
Y
) as U(X, Y ) and Y m−1V (X

Y
) as

V (X, Y ), we obtain the equation

U(X, Y )F (X, Y ) + V (X, Y )G(X, Y ) = RY 2m−1.

Similarly, there are homogenous polynomials U ′(X, Y ) and V ′(X, Y ) of degree m − 1 such
that

U ′(X, Y )F (X, Y ) + V ′(X, Y )G(X, Y ) = RX2m−1.

Substitute (a, b) for (X, Y ) to obtain the equations

U(a, b)F (a, b) + V (a, b)G(a, b) = Rb2m−1,

U ′(a, b)F (a, b)+ V ′(a, b)G(a, b) = Ra2m−1.

From these equations we see that

gcd(F (a, b), G(a, b)) divides gcd(Ra2m−1, Rb2m−1) = R.

Moreover, as in the first part of the proof, there is a C > 0 such that

U(a, b), U ′(a, b), V (a, b), V ′(a, b) ≤ C (max |a|, |b|)m−1 .

Therefore

2C (max |a|, |b|)m−1 (max |F (a, b)|, |G(a, b)|)≥ |R||a|2m−1, |R||b|2m−1.

Together with gcd(F (a, b), G(a, b))|R, these inequalities imply that

H(ϕ(P )) ≥ 1

|R| max(|F (a, b)|, |G(a, b)|)≥ 1

2C
H(P )m.

On taking logs, we obtain the inequality

h(ϕ(P )) ≥ mh(P )− log 2C.

There is a well-defined map (special case of the Veronese map)

(a : b), (c : d) �→ (ac : ad+ bc : bd) : P1 × P1 → P2.

Let R be the image of (P,Q).

Lemma 15.2.

1

2
≤ H(R)

H(P )H(Q)
≤ 2.

Proof. Choose (a : b) and (c : d) to be primitive representatives of P and Q. Then

H(R) ≤ max(|ac|, |ad+ bc|, |bd|) ≤ 2max(|a|, |b|)max(|c|, |d|) = 2H(P )H(Q).

If a prime p divides both ac and bd, then either it divides a and d but not b or c, or the other
way round. In either case, it doesn’t divide ad + bc, and so (ac : ad+ bc : bd) is a primitive
representative for R. It remains to show that

max(|ac|, |ad+ bc|, |bd|) ≥ 1

2
(max(|a|, |b|) (max |c||d|) ,

but this is an elementary exercise.
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Heights on E. Let E be the elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Q, ∆ = 4a3 + 27b2 �= 0.

For P ∈ E(Q), define

H(P ) =

{
H((x(P ) : z(P ))) if z(P ) �= 0
0 if P = (0 : 1 : 0).

and

h(P ) = logH(P ).

Other definitions of h are possible, but they differ by bounded amounts, and therefore lead
to the same canonical height (see below).

Lemma 15.3. For any constant B, the set of P ∈ E(Q) such that h(P ) < B is finite.

Proof. Certainly, for any constant B, {P ∈ P1(Q) | H(P ) ≤ B} is finite. But for every point
(x0 : z0) ∈ P1(Q), there are at most two points (x0 : y : z0) ∈ E(Q), and so {P ∈ E(Q) |
H(P ) ≤ B} is finite.

Proposition 15.4. There exists a constant A such that

|h(2P )− 4h(P )| ≤ A.
Proof. Let P = (x : y : z) and 2P = (x2 : y2 : z2). According to the duplication formula
(p37),

(x2 : z2) = (F (x, z) : G(x, z))

where F (X,Z) and G(X,Z) are polynomials of degree 4 such that

F (X, 1) = (3X2 + a)2 − 8X(X3 + ax+ b)
G(X, 1) = 4(X3 + aX + b).

Since X3+ aX + b and its derivative 3X2 + b have no common root, neither do F (X, 1) and
G(X, 1), and so Proposition 15.1 shows that

|h(2P )− 4h(P )| ≤ A
for some constant A.

Theorem 15.5. There exists a unique function ĥ : E(Q) → R satisfying the conditions (a)
and (b):

(a) ĥ(P )− h(P ) is bounded;
(b) ĥ(2P ) = 4ĥ(P ).

In fact,

ĥ(P ) = lim
n→∞

h(2nP )

4n

and it has the following additional properties:

(c) for any C ≥ 0, the set {P ∈ E(Q) | ĥ(P ) ≤ C} is finite;
(d) ĥ(P ) ≥ 0, with equality if and only if P has finite order.
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Proof. We first prove uniqueness. If h′ satisfies (a) with bound B, then

|h′(2nP ) − h(2nP )| ≤ B.
If in addition it satisfies (b), then ∣∣∣∣∣h′(P ) − h(2

nP )

4n

∣∣∣∣∣ ≤ B

4n
,

and so h(2nP )/4n converges to h′(P ).
To prove the existence, we first verify that h(2nP )/4n is a Cauchy sequence. From Propo-

sition 15.4, we know that there exists a constant A such that

|h(2P )− 4h(P )| ≤ A
for all P . For N ≥ M ≥ 0 and P0 ∈ E(Q),∣∣∣∣∣h(2

NP0)

4N
− h(2

MP0)

4M

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
n=M

(
h(2n+1P0)

4n+1
− h(2

nP0)

4n

)∣∣∣∣∣
≤

N−1∑
n=M

1

4n+1
|h(2n+1P0)− 4h(2nP0)|

≤
N−1∑
n=M

1

4n+1
A

≤ A

4M+1

(
1 +

1

4
+

1

42
+ · · ·

)
=

A

3 · 4M .

This shows that the sequence h(2nP )/4n is Cauchy, and we define ĥ(P ) to be its limit.

Because H(P ) is an integer ≥ 1, h(P ) ≥ 0 and ĥ(P ) ≥ 0.

When M = 0 the displayed equation becomes∣∣∣∣∣h(2
NP )

4N
− h(P )

∣∣∣∣∣ ≤ A3 ,
and on letting N → ∞ we obtain (a).

For (b), note that

ĥ(2P ) = lim
n→∞

h(2n+1P )

4n
= 4 · lim

n→∞
h(2n+1P )

4n+1
= 4 · ĥ(P ).

The set of P for which ĥ(P ) ≤ C is finite, because h has this property and the difference

ĥ(P )− h(P ) is bounded.
If P is torsion, then {2nP | n ≥ 0} is finite, so ĥ is bounded on it, by D say, and

ĥ(P ) = ĥ(2nP )/4n ≤ D/4n for all n. On the other hand, if P has infinite order, then

{2nP | n ≥ 0} is infinite and ĥ is unbounded on it. Hence ĥ(2nP ) > 1 for some n, and so

ĥ(P ) > 4−n > 0.
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The function ĥ is called18 the canonical, or Néron-Tate, height. If was defined indepen-
dently by Tate using the above method, and by Néron using a much more elaborate method
which, however, gives more information about ĥ.

Let f : M → K be a function from an abelian group M into a field K of characteristic
�= 2. Such an f is called a quadratic form if f(2x) = 4f(x) and

B(x, y) =df f(x + y)− f(x)− f(y)
is bi-additive. Then B is symmetric, and it is the only symmetric bi-additive form B :
M ×M → K such that f(x) = 1

2
B(x, x). We shall need the following criterion:

Lemma 15.6. A function f : M → K from an abelian group into a field K of characteristic
�= 2 is a quadratic form if and only if it satisfies the parallelogram19 law:

f(x+ y) + f(x− y) = 2f(x) + 2f(y) all x, y ∈M.
Proof. On taking x = y = 0 in the parallelogram law, we find that f(0) = 0, on taking x = y
we find that f(2x) = 4f(x), and on taking x = 0 we find that f(−y) = f(y). By symmetry,
it remains to show that B(x+ y, z) = B(x, z) +B(y, z), i.e., that

f(x+ y + z)− f(x+ y)− f(x+ z)− f(y + z) + f(x) + f(y) + f(z) = 0.

Now four applications of the parallelogram law show that:

f(x+ y + z) + f(x+ y − z)− 2f(x + y)− 2f(z) = 0

f(x − y + z) + f(x+ y − z)− 2f(x) − 2f(y − z) = 0

f(x− y + z) + f(x+ y + z)− 2f(x + z)− 2f(y) = 0

2f(y + z) + 2f(y − z)− 4f(y)− 4f(z) = 0.

The alternating sum of these equations is the required equation.

Proposition 15.7. The height function ĥ : E(Q) → R is a quadratic form.

We have to prove the parallelogram law.

Lemma 15.8. There exists a constant C such that

H(P1 + P2)H(P1 − P2) ≤ C ·H(P1)2H(P2)2
for all P1, P2 ∈ E(Q).

Proof. Let P1 + P2 = P3 and P1 − P2 = P4, and let Pi = (xi : yi : zi). Then

(x3x4 : x3z4 + x4z3 : z3z4) = (W0 : W1 : W2)

where (see p37)

W0 = (X2Z1 −X1Z2)2
W1 = 2(X1X2 + aZ1Z2)(X1Z2 +X2Z1) + 4bZ41Z

4
2

W2 = X2
1X

2
2 − 2aX1X2Z1Z2 − 4b(X1Z1Z

2
2 +X2Z

2
1Z2) + a

2Z21Z
2
2 .

It follows that
H(W0 :W1 :W2) ≤ CH(P1)2H(P2)2.

18Unfortunately, there are different definitions of the “canonical” height, which differ by a constant factor.
19In elementary linear algebra, the parallelogram law says that, for vectors u and v in Rn, ‖u + v‖2 +

‖u− v‖2 = 2‖u‖2 + 2‖v‖2.
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According to Lemma 15.2,

H(W0 : W1 : W2) ≥ 1

2
H(P3)H(P4).

Lemma 15.9. The canonical height function ĥ : E(Q) → R satisfies the parallelogram law:

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).

Proof. On taking logs in the previous lemma, we find that

h(P +Q) + h(P −Q) ≤ 2h(P ) + 2h(Q) +B.

On replacing P and Q with 2nP and 2nQ, dividing through by 4n, and letting n → ∞, we
obtain the inequality

ĥ(P +Q) + ĥ(P −Q) ≤ 2ĥ(P ) + 2ĥ(Q).

Putting P ′ = P +Q and Q′ = P −Q in this gives the reverse inequality:

ĥ(P ′) + ĥ(Q′) ≤ 2ĥ

(
P ′ +Q′

2

)
+ 2ĥ

(
P ′ −Q′

2

)
=

1

2
ĥ(P ′ +Q′) +

1

2
ĥ(P ′ −Q′).

Aside 15.10 (For the experts). Let K be a number field. For each prime v of K, let | · |v
be the normalized valuation, for which the product formula holds:∏

v

|a|v = 1, a ∈ K×.

Define the height of a point P = (a0 : a1 : . . . : an) ∈ Pn(K) to be

H(P ) =
∏
v

max
i
(|ai|v).

Because of the product formula, H(P ) doesn’t depend on the choice of (a0 : . . . : an)
representing P . When K = Q, we can choose the ai to be integers with no common factor,
which makes maxi |ai|p = 1 for all p, and leaves H(P ) = maxi |ai|∞.
With this definition, all the above results extend to elliptic curves over number fields.

16. Completion of the Proof of the Mordell-Weil Theorem, and Further

Remarks

Let P1, . . . , Ps be a set of representatives for E(Q)/2E(Q). For any Q ∈ E(Q) there exists
an i such that Q ± Pi ∈ 2E(Q) for both choices of signs. According to the parallelogram
law,

h(Q± Pi) ≤ h(Q) + h(Pi)
for (at least) one choice of signs. For that choice, let Q± Pi = 2Q′. Then

4h(Q′) = h(Q± Pi) ≤ h(Q) + h(Pi) ≤ h(Q) + C
where C = maxh(Pi). Hence h(Q′) < 1

2
h(Q) provided h(Q) > C. Now the argument

sketched in Section 11 shows that E(Q) is generated by P1, . . . , Ps and the Q with h(Q) ≤ C .
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The Problem of Computing the Rank of E(Q). According to André Weil, one of the
two oldest outstanding problems in mathematics is that of determining the group E(Q). We
know that E(Q) is finitely generated, say E(Q) ≈ E(Q)tors⊕Zr , and the problem is to find
an algorithm for determining r, or better, for finding a set of generators for E(Q)/E(Q)tors.
Since we know how to compute E(Q)tors, this amounts to being able to find a basis for
E(Q)/2E(Q). We can regard S(2)(E/Q) as giving a computable upper bound for r, with
TS(E/Q)2 as the error. The problem is to determine the image of E(Q) in S(2)(Q).

Consider the following commutative diagram:

0 → E(Q)/2E(Q) → S(2)(E/Q) → TS(E/Q)2 → 0
↑ ↑ ↑ 2

0 → E(Q)/4E(Q) → S(4)(E/Q) → TS(E/Q)4 → 0
↑ ↑ ↑ 2
...

...
...

↑ ↑ ↑ 2
0 → E(Q)/2nE(Q) → S(2

n)(E/Q) → TS(E/Q)2n → 0.

Define S(2,n)(E/Q) to be the image of S(2
n)(E/Q) in S(2)(E/Q).

Proposition 16.1. The group

E(Q)/2E(Q) ⊂ ∩nS(2,n)(E/Q),

and is equal to it if and only if TS(E/Q) contains no nonzero element divisible by all powers
of 2, in which case S(2,n)(E/Q) is constant for sufficiently large n.

Proof. Clearly the image of E(Q)/2nE(Q) in S(2)(E/Q) is independent of n, and is contained
in S(2,n)(E/Q) for all n. Conversely, let γ ∈ ∩S(2,n)(E/Q). By definition, there is, for each
n, an element γn ∈ S(2n) mapping γ. Let δn be the image of γn in TS(E/Q)2n. Then
2n−1δn = δ1 for all n, and so δ1 is divisible by all powers of 2. If TS(E/Q) contains no such
element other than zero, then γ is in the image of E(Q)/2E(Q). It is not difficult to show
that, in this case, the 2-primary component of TS(E/Q) is finite (using that TS(E/Q)2 is
finite), and the map S(2

n+1)(Q) → S(2
n)(Q) is onto if TS(E/Q)2n = 0.

This gives a strategy for computing r. Calculate S(2), and then leave your computer
running overnight searching for points in E(Q). If the subgroup T (1) of E(Q) generated
by the points the computer has found maps onto S(2) we have found r, and even a set of
generators for E(Q). If not, calculate S(2

2), and have the computer run overnight again
finding a bigger group T (2) ⊂ E(Q). If the image of T (2) in S(2) is S(2,2), then we have
found r. If not, we compute S(2

3) . . . .

Nightmare possibility: The Tate-Shafarevich group contains a nonzero element divisible
by all powers of 2, in which case the calculation goes on for all eternity. This would happen,
for example, if TS(E/Q) contains a copy of Q/Z.

Conjecture 16.2. The Tate-Shafarevich group is always finite.

When the conjecture is true, then the above argument shows that we have an algorithm
for computing E(Q).

Until the work of Rubin and Kolyvagin about 1987, the Tate-Shafarevich group was not
known to be finite for a single elliptic curve over a number field, and the conjecture is still
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far from being proved in that case. For an elliptic curve E over a function field K in one
variable over a finite field k, I proved that TS(E/K) is finite when j(E) ∈ k in my thesis
(1967). Later (1975) I showed that the curve

E(j) : Y 2Z = X3 − 27

4

j

j − 1728
XZ2 − 27

4

j

j − 1728
Z3

over the field K = Fp(j) has finite Tate-Shafarevich group. Not much more is known now.

The Néron-Tate Pairing. We saw in Section 15, that there is a canonical Z-bilinear
pairing

B : E(Q)× E(Q) → R, B(x, y) = ĥ(x+ y)− ĥ(x)− ĥ(y).
This pairing extends uniquely to an R-bilinear pairing

B : E(Q)⊗ R ×E(Q)⊗ R → R.

If we choose a Z-basis e1, . . . , er for E(Q)/E(Q)tors, then E(Q) ⊗ R has R-basis (e1 ⊗
1, . . . , er ⊗ 1) with respect to which B has matrix

(B(ei, ej))

Theorem 16.3. The bilinear pairing

E(Q)⊗ R × E(Q)⊗ R → R

defined by ĥ is positive definite (and, in particular, nondegenerate).

This follows from what we have proved already, plus the following result from linear
algebra. By a lattice in a real vector space, I mean a Z-submodule generated by a basis for
V (sometimes this called a full, or complete, lattice).

Lemma 16.4. Let q : V → R be a quadratic form on a finite-dimensional real vector space
V . If there exists a lattice Λ in V such that

(a) q(P ) = 0, P ∈ Λ, =⇒ P = 0,
(b) for every constant C, the set {P ∈ Λ | q(P ) ≤ C} is finite,

then q is positive definite on V .

Proof. According to Sylvester’s theorem (see Math 593), there exists a basis for V relative
to which q takes the form

q(x) = x21 + · · ·+ x2s − x2s+1 − · · · − x2t , t ≤ dimV.

Use the basis to identify V with Rn. Let λ be the length of the shortest vector in Λ, i.e.,

λ = inf{q(P ) | P ∈ Λ, P �= 0}.
From (b) we know that λ > 0. Consider the set

B(δ) = {(xi) | x21 + · · ·+ x2s ≤
λ

2
, x2s+1 + · · · + x2t ≤ δ}.

The length (using q) of any vector in B(δ) is ≤ λ/2, and so B(δ)∩Λ = {0}, but the volume
of B(δ) can be made arbitrarily large by taking δ large, and so this violates the following
theorem of Minkowski.
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Theorem 16.5 (Minkowski). Let Λ be a lattice in Rn with fundamental parallelopiped D0,
and let B be a subset of Rn that is compact, convex, and symmetric in the origin. If

Vol(B) ≥ 2nVol(D)

then B contains a point of Λ other than the origin.

Proof. We first show that a measurable set S in Rn with Vol(S) > Vol(D0) contains distinct
points α, β such that α− β ∈ Λ. Clearly

Vol(S) =
∑

Vol(S ∩D)
where the sum is over all the translates of D by elements of Λ. The fundamental paral-
lelopiped D0 will contain a unique translate (by an element of Λ) of each set S ∩D. Since
Vol(S) > Vol(D0), at least two of these sets will overlap, and so there exist elements α, β ∈ S
such that

α− λ = β − λ′, some λ �= λ′ ∈ Λ.

Then α − β = λ− λ′ ∈ Λ \ {0}.
We apply this to 1

2
B =df {x

2
| x ∈ B}. It has volume 1

2n Vol(B) > Vol(D0), and so there
exist α, β ∈ B, α �= β, such that α/2− β/2 ∈ Λ. Because B is symmetric about the origin,
−β ∈ B, and because it is convex, (α+ (−β))/2 ∈ B.
Remark 16.6. Systems consisting of a real vector space V , a lattice Λ in V , and a positive-
definite quadratic form q on V are of great interest in mathematics. By Sylvester’s theorem,
we can choose a basis for V that identifies (V, q) with (Rn, X2

1 + · · ·+X2
n). Finding a dense

sphere (lattice) packing in Rn amounts to finding a lattice Λ such that

‖shortest vector‖n
Vol(fundamental parallelopiped)

is large. Many lattices, for example, the Leech lattice, have very interesting automorphism
groups. See Conway and Sloane, Sphere Packings, Lattices and Groups.

From an elliptic curve E over Q, one obtains such a system, namely, V = E(Q) ⊗ R,

Λ = E(Q)/E(Q)tors, q = ĥ. As far as I know, they aren’t interesting—at present no elliptic
curve is known with rank(E(Q)) > 19. However, for elliptic curves over function fields in
one variable over a finite field, Elkies, Shioda, Dummigan, and others have shown that one
gets (infinite families of) very interesting lattices.

Computing the rank. Computing the rank r of E(Q) can be difficult (perhaps impossible),
but occasionally it is straightforward. In order to avoid the problem of having to work with
a number field L other than Q, we assume that the elliptic curve has all its points of order
2 rational over Q:

E : Y 2Z = (X − αZ)(X − βZ)(X − γZ), α, β, γ distinct integers.

The discriminant of (X − α)(X − β)(X − γ) is
∆ = (α− β)2(β − γ)2(γ − α)2.

Proposition 16.7. The rank r of E(Q) satisfies the inequality

r ≤ 2×#{p | p divides 2∆}.
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Proof. Since E(Q) ≈ T ⊕ Zr, T = E(Q)tors, we have E(Q)/2E(Q) ≈ T/2T ⊕ (Z/2Z)r .

Because T is finite, the kernel and cokernel of T
2−→ T have the same order, and so T/2T ≈

(Z/2Z)2. Theorem provides us with an injection E(Q)/2E(Q) ↪→ (Q×/Q×2)2, and the image
is contained in the product of the subgroups of Q×/Q×2 generated by −1 and the primes
where E has bad reduction, namely, those dividing 2∆.

It is possible to improve this estimate. Let T1 be the set of prime numbers dividing ∆ for
which the reduction is nodal, and let T2 be the set of prime numbers dividing ∆ for which
the reduction is cuspidal. Thus T1 comprises the prime numbers modulo which two of the
roots of

(X − α)(X − β)(X − γ)
coincide, and T2 comprises those modulo which all three coincide. Let t1 and t2 respectively
be the numbers of elements of T1 and T2.

Proposition 16.8. The rank r of E(Q) satisfies r ≤ t1 + 2t2 − 1.

Proof. Define ϕα : E(Q)/2E(Q) → Q×/Q×2 as in (14.7):

ϕα((x : y : z)) =


(x
z
− α)Q×2 z �= 0, x �= αz;

(α − β)(α− γ)Q× z �= 0, x = αz
Q× (x : y : z) = (0 : 1 : 0).

Define ϕβ similarly—the map

P �→ (ϕα(P ), ϕβ(P )) : E(Q)/2E(Q) → (Q×/Q×2)2

is injective. For each prime p, let ϕp(P ) be the element of (Z/2Z)2 whose components are

ordp(ϕα(P )) mod 2, and ordp(ϕβ(P )) mod 2

and let ϕ∞(P ) be the element of {±}2 whose components are

sign(ϕα(P )), and sign(ϕβ(P )).

The proposition is proved by showing:

(a) if p does not divide ∆, then ϕp(P ) = 0 for all P ;
(b) if p ∈ T1, then ϕp(P ) is contained in the diagonal of F22 for all P ;
(c) when α, β, γ are ordered so that α < β < γ, ϕ∞(P ) equals (+,+) or (+,−).

Except for p = 2, (a) was proved in the paragraph preceding (14.7).

We prove (b) in the case α ≡ β mod p and P = (x : y : 1), x �= α, β, γ. Let
a = ordp(x− α), b = ordp(x− β), c = ordp(x− γ).

Because
(x− α)(x− β)(x− γ)

is a square, a+ b+ c ≡ 0 mod 2.

If a < 0, then (because α ∈ Z) p−a occurs as a factor of the denominator of x (in its
lowest terms), and it follows that b = a = c. Since a + b + c ≡ 0 mod 2, this implies that
a ≡ b ≡ c ≡ 0 mod 2, and so ϕp(P ) = 0. The same argument applies if b < 0 or c < 0.

If a > 0, then p divides the numerator of x − α. Because p doesn’t divide (α − γ), it
doesn’t divide (α− γ)+ (x−α) = (x− γ), and so c = 0. Now a+ b ≡ 0 mod 2 implies that
ϕp(P ) lies in the diagonal of F22. A similar argument applies if b > 0 or c > 0.
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The remaining cases of (b) are proved similarly.

We prove (c). Let P = (x : y : 1), x �= α, β, γ. We may suppose that α < β < γ, so that
(x− α) > (x− β) > (x− γ). Then ϕ∞(P ) = (+,+), (+,−), or (−,−). However, because

(x− α)(x− β)(x− γ)
is a square in Q, the pair (−,−) is impossible. The cases x = α etc. are equally easy.

Example 16.9. The curve
E : Y 2Z = X3 −XZ2

is of the above form with (α, β, γ) = (−1, 0, 1). The only bad prime is 2, and here the
reduction is nodal. Therefore r = 0, and E has no point of infinite order:

E(Q) ≈ (Z/2Z)2.

Exercise 16.10. Hand in one of the following two problems (those who know the quadratic
reciprocity law should do (2)).

(1) Show that E(Q) is finite if E has equation

Y 2Z = X3 − 4XZ2.

Hint: Let P be a point of infinite order in E(Q), and show that, after possibly replacing P
with P +Q where 2Q = 0, ϕ2(P ) is zero. Then show that ϕ∞(P ) = (+,+)—contradiction.

(2) Let E be the elliptic curve

Y 2Z = X3 − p2XZ2
where p is an odd prime. Show that the rank r of E(Q) satisfies:

r ≤ 2 if p ≡ 1 mod 8

r = 0 if p ≡ 3 mod 8

r ≤ 1 otherwise.

Hint: Let P be a point of infinite order in E(Q), and show that, after possibly replacing P
with P +Q where 2Q = 0, ϕp(P ) is zero.

Note: These are fairly standard examples. You should do them without looking them up
in a book.

17. Geometric Interpretation of the Cohomology Groups; Jacobians

For simplicity throughout this section we take k to be a perfect field, for example, a field
of characteristic zero or a finite field. Everything still holds when k is not perfect except
that then the algebraic closure kal of k must be replaced with its separable algebraic closure
(the union of all subfields of kal finite and separable over k).

For any elliptic curve E over a field k, we have an exact sequence of cohomology groups:

0 → E(k)/nE(k) → H1(k, En) → H1(k, E)n → 0.

Here H1(k, En) and H
1(k, E) are defined to be the groups of crossed homomorphisms from

Gal(kal/k) to E(kal)n and E(k
al) respectively, modulo the principal crossed homomorphisms.

In this section, we shall give a geometric interpretation of these groups, and hence also of
the Selmer and Tate-Shafarevich groups. We shall attach to any curve W of genus 1 over
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k, possibly without a point with coordinates in k, an elliptic curve E, called its Jacobian.
The Tate-Shafarevich group of an elliptic curve E classifies the curves of genus 1 over k for
which the Hasse principle fails, i.e., such that the curve has a point in Qp for all p and in R,
but which doesn’t have a point in Q.

In general, H1(k, ?) classifies objects over k that become isomorphic over kal to a fixed
object with automorphism group ?. We shall see several examples of this.

Principal homogeneous spaces (of sets). Let A be an abelian group. A right A-set

(w, a) �→ w + a : W × A→ W

is called a principal homogeneous space for A if W �= ∅ and the map

(w, a) �→ (w,w + a) :W × A→ W ×W

is bijective, i.e., if for every pair w1, w2 ∈W , there is a unique a ∈ A such that w1+ a = w2.

Example 17.1. (a) Addition A× A→ A makes A into a principal homogeneous space for
A, called the trivial principal homogeneous space.

(b) An affine space (for example, the universe according to Newton) is (by definition) a
principal homogeneous space for a vector space—essentially, it is a vector space without a
preferred origin.

A morphism ϕ :W →W ′ of principal homogeneous spaces is simply a map A-sets.

Proposition 17.2. Let W and W ′ be principal homogeneous spaces for A.
(a) For any points w0 ∈ W , w′

0 ∈ W ′, there exists a unique morphism ϕ : W → W ′

sending w0 to w
′
0.

(b) Every morphism W → W ′ is an isomorphism (i.e., has an inverse that is also a
morphism).

Proof. (a) Uniqueness: Any w ∈W can be written uniquely in the form w = w0+ a, a ∈ A,
and then ϕ(w) = w′

0 + a. Existence: This formula defines a morphism.

(b) If ϕ maps w0 to w
′
0, then the unique morphismW ′ → W sending w′

0 to w0 is an inverse
to ϕ.

Corollary 17.3. (a) Let W be a principal homogeneous space over A. For any point w0 ∈
W , there is a unique morphism A→W (of principal homogeneous spaces) sending 0 to w0.

(b) An a ∈ A defines an automorphism w �→ w + a of W , and every automorphism of W
is of this form for a unique a ∈ A.

Hence

Aut(W ) = A;

—for any abelian group A, we have defined a class of objects having A as their groups of
automorphisms.
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Principal homogeneous spaces (of curves). Let E be an elliptic curve over a field k.
A principal homogeneous space for E is a curve W over k together with a right action of E
given by a regular 20 map

(w, P ) �→ w + P :W × E →W

such that

(w, P ) �→ (w,w + P ) :W × E → W ×W
is an isomorphism of algebraic varieties. The conditions imply that, for any field K ⊃ k,
W (K) is either empty or is a principal homogeneous space for the group E(K) (in the sense
of the previous subsection). A morphism of principal homogeneous spaces for E is a regular
map ϕ : W → W ′ such that

W × E → W
↓ ↓

W ′ × E → W ′

commutes. Much of the theory in the previous subsection extends to principal homogeneous
spaces for elliptic curves:

Addition E × E → E makes E into a principal homogeneous space for E—any principal
homogeneous space isomorphic to this principal homogeneous space is said to be trivial.

Let W and W ′ be principal homogeneous spaces for E. For any field K ⊃ k and any
points w0 ∈ W (K), w′

0 ∈ W ′(K), there exists a unique morphism ϕ : W → W ′ over K
sending w0 to w

′
0, and ϕ is automatically an isomorphism of principal homogeneous spaces

over K.

Let W be a principal homogeneous space for E. For any point w0 ∈ W (k), there is a
unique homomorphism E → W (of principal homogeneous spaces) sending 0 to w0. ThusW
is trivial if and only if W (k) �= ∅. Since W will have a point with coordinates in some finite
extension K of k (this follows from the Hilbert Nullstellensatz), it becomes trivial over such
a K.

A point P ∈ E(K) defines an automorphism w �→ w + P of W , and every automorphism
of W over K is of this form for a unique P ∈ E(K).

The classification of principal homogeneous spaces. Let W be a principal homoge-
neous space for E, and choose a point w0 ∈W (kal). For any σ ∈ Gal(kal/k), σw0 ∈W (kal),
and so can be expressed σw0 = w0 + f(σ) for a unique f(σ) ∈ E(kal). Note that

(στ )w0 = σ(τw0) = σ(w0 + f(τ )) = σw0 + σf(τ ) = w0 + f(σ) + σf(τ ),

and so

f(στ ) = f(σ) + σf(τ ).

Thus f is a crossed homomorphism Gal(kal/k) → E(kal). Because w0 has coordinates in
a finite extension of k, f is continuous. A second point w1 ∈ W (kal) will define a second
crossed homomorphism f1, but w1 = w0 + P for some P ∈ E(Qal), and so

σw1 = σ(w0 + P ) = σw0 + σP = w0 + f(σ) + σP = w1 + f(σ) + σP − P.
Hence

f1(σ) = f(σ) + σP − P,
20That is, one defined by polynomials.
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i.e., f and f ′ differ by a principal crossed homomorphism, and so we have attached a well-
defined cohomology class to W .

If the cohomology class is zero, then f(σ) = σP − P for some P ∈ E(kal), and
σ(w0 − P ) = σw0 − σP = w0 + σP − P − σP = w0 − P.

This implies that w0 − P ∈W (k), and so W is a trivial principal homogeneous space.

Theorem 17.4. The map W �→ [f ] defines a one-to-one correspondence

{Principal homogeneous spaces for E}/≈ 1:1←→ H1(k, E).

Proof. Let ϕ : W →W ′ be an isomorphism of principal homogeneous spaces for E (over k),
and let w0 ∈W (kal). One checks immediately that (W,w0) and (W ′, ϕ(w0)) define the same
crossed homomorphism, and hence the map

{Principal homogeneous spaces for E}/≈ −→ H1(k, E)

is well-defined. If W and W ′ define the same cohomology class, we can choose w0 and w
′
0 so

that (W,w0) and (W ′, w′
0) define the same crossed homomorphism. There is a unique regular

map ϕ : W → W ′ over kal sending w0 to w′
0. Let w ∈W (kal), and write w = w0 + P . Then

ϕ(σw) = ϕ(σ(w0+P )) = ϕ(σw0+σP ) = ϕ(w0+f(σ)+σP ) = w
′
0+f(σ)+σP = σw′

0+σP = σϕ(w),

which implies that the map ϕ is defined over k (i.e., it is defined by polynomials with
coordinates in k rather than kal). Hence the map is one-to-one. We discuss the surjectivity
in the next subsubsection.

Defining algebraic curves over subfields of algebraically closed fields. Two plane affine curves
C1 and C2 over k may become isomorphic over kal without being isomorphic over k. The
simplest example is the pair of curves

X2 + Y 2 = 1, X2 + Y 2 = −1,
which are not isomorphic over R (one has no real points) but which become isomorphic over
C.

From an affine curve C over k, we obtain an affine curve C ′ over kal together with an
action of Gal(kal/k) on C(kal).

Proposition 17.5. The functor sending a plane affine curve C over k to C ′ endowed with
the action of Gal(kal/k) on C ′(kal) is fully faithful, i.e., to give a regular map C1 → C2 of
curves over k is the same as to give a regular map C ′

1 → C ′
2 commuting with the Galois

actions.

We explain the statement. Suppose C1 and C2 are defined by the polynomials F1(X, Y ),
F2(X, Y ) ∈ k[X, Y ]. The curves C ′

1 and C
′
2 are defined by the same polynomials now regarded

as elements of kal[X, Y ].

By definition, a regular map ϕ : C1 → C2 is of the form

(x, y) �→ (G(x, y), H(x, y)), G(x, y), H(x, y) ∈ k[C1] =df k[X, Y ]/(F1(X, Y )).

A regular map ϕ : C ′
1 → C ′

2 is of the form

(x, y) �→ (G(x, y), H(x, y)), G(x, y), H(x, y) ∈ kal[C ′
1] =df k

al[X, Y ]/(F1(X, Y )).
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To say that ϕ commutes with the Galois actions means that, for all P ∈ C ′
1(k

al) and all
σ ∈ Gal(kal/k), ϕ(σP ) = σϕ(P ), i.e., σ ◦ ϕ ◦ σ−1 = ϕ. But σ ◦ ϕ ◦ σ−1 is defined by σG, σH
where σG and σH are obtained from G and H by applying σ to their coefficients. Therefore,
if σ ◦ ϕ ◦ σ−1 = ϕ for all σ, then G,H ∈ kal[C ′

1]
Gal(kal/k) = k[C1].

It follows from the proposition that if a curve C ′ endowed with an action of the Galois
group on C ′(kal) arises from a curve C over k, then C is unique (up to a unique isomorphism).
We can ask: when does such a pair (C ′, action) arise from a curve C over k? A necessary
and sufficient condition is the following:

(a) the orbits of Gal(kal/k) acting on C ′(kal) are finite; and
(b) denote the given action of σ ∈ Gal(kal/k) on P ∈ C ′(kal) by σ ∗ P ; let σC ′ be the

curve obtained from C ′ by applying σ to the coefficients of the polynomial defining
C ′, and let P �→ σP : C ′(kal) → σC ′(kal) be the map (x, y) → (σx, σy); then the map
σ ∗ P �→ σP : C ′(kal) →σ C ′(kal) should be regular.

Similar remarks apply to plane projective curves.

Geometric Interpretation of H1(Q, En). We now give a geometric interpretation of
H1(k, En). An n-covering is a pair (W,α) consisting of a principal homogeneous space
W for E and a regular map α : W → E (defined over k) with the property: for some
w1 ∈W (kal), α(w1+P ) = nP for all P ∈ E(kal). A morphism (W,α) → (W ′, α′) (automat-
ically an isomorphism) of n-coverings is a morphism ϕ :W → W ′ of principal homogeneous
spaces such that α = α′ ◦ ϕ.
For σ ∈ Gal(kal/k), write σw1 = w1 + f(σ), f(σ) ∈ E(kal). As before, f(στ ) = f(σ) +

σf(τ ). The equation σα(w1) = α(σw1) implies that nf(σ) = 0, and so f is a crossed
homomorphism with values in En(k

al). The element w1 ∈W (kal) is uniquely determined by
the property “α(w1 + P ) = nP for all P” up to replacement by w1 + Q, Q ∈ En(kal). It
follows easily that the class of f in H1(k, En) is independent of the choice of w1.

Theorem 17.6. The map (W,α) �→ [f ] defines a bijection

{n-coverings}/≈ 1:1←→ H1(k, En).

Proof. The proof is similar to that of Theorem 17.4.

Geometric Interpretation of the Exact Sequence. We now give a geometric description
of the exact sequence:

0 → E(k)/nE(k) → H1(k, En) → H1(k, E)n → 0.

If γ ∈ H1(k, En) corresponds to the n-covering (W,α), then the image of γ in H1(k, E)
corresponds to W . If W is trivial, so that there exists a w0 ∈ W (k), then γ is the image
of the point α(w0) ∈ E(k). If w′

0 also ∈ W (k), then w′
0 = w0 + P for some P ∈ E(k), and

α(w′
0) = α(w0) + nP , and so α(w0) is well-defined as an element of E(k)/nE(k).

Twists of Elliptic Curves. In this subsection we study the following problem: given an
elliptic curve E0 over k, find all elliptic curves E over k that become isomorphic to E0 over
kal. Such a curve E is often called a “twist” of E0. Remember than an elliptic curve E over
k has a distinguished point O ∈ E(k). Throughout, I assume that the characteristic of k is
�= 2, 3.



80 J.S. MILNE

Example 17.7. Consider an elliptic curve

E1 : Y
2Z = X3 + aXZ2 + bZ3, a, b ∈ k, ∆ = 4a3 + 27b2 �= 0

over k. For any d ∈ k×,
Ed : dY

2Z = X3 + aXZ2 + bZ3,

is an elliptic curve over k that becomes isomorphic to E1 over k
al. Indeed, after making the

change of variables dZ ↔ Z, the equation becomes

Y 2Z = X3 +
a

d2
XZ2 +

b

d3
Z3,

and so Ed becomes isomorphic to E1 over any field in which d is a square.

We first compute Aut(E, 0), the group of automorphisms of E fixing the zero element.
According to Theorem 5.3, two elliptic curves

E(a, b) : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ k, ∆(a, b) �= 0

E(a′, b′) : Y 2Z = X3 + a′XZ2 + b′Z3, a′, b′ ∈ k, ∆(a′, b′) �= 0

are isomorphic if and only if there exists a c ∈ k× such that a′ = c4a, b′ = c6b, in which case
the isomorphisms are of the form

(x : y : z) �→ (c2x : c3y : z).

Since these maps not only send O to O′, but also map straight lines in P2 to straight lines,
they are homomorphisms. We apply this to the case: (a′, b′) = (a, b).

Case ab �= 0: Here we seek c ∈ k× such that c4 = 1 = c6. These equations imply that
c = ±1, and so the only automorphism of (E,O) other than the identity map is

(x : y : z) �→ (x : −y : z).

Case a = 0: Here c can be any 6th root ζ of 1 in k, and the automorphisms of (E,O) are
the maps

(x : y : z) �→ (ζ2ix : ζ3iy : z).

Case b = 0: Here c can be any 4th root ζ of 1 in k, and the automorphisms of (E,O) are
the maps

(x : y : z) �→ (ζ2ix : ζ3iy : z).

Proposition 17.8. The automorphism group of (E,O) is ≈ {±1} unless j(E) = 0 or 1728,
in which cases it is ≈ µ6(k) or ≈ µ4(k) respectively.
Remark 17.9. (a) Notice that the proposition is consistent with Proposition 10.22, which
says that (over C), End(E) is isomorphic to Z or to a subring of the ring of integers in a
field Q[

√−d]. The only units in such rings are roots of 1, and only Q[
√−1] and Q[

√−3]
contain roots of 1 other than ±1.
(b) When we allow k to have characteristic 2 or 3, then it is still true that Aut(E,O) =

{±1} when j(E) �= 0, 1728, but when j = 0 or 1728 the group of automorphisms of (E,O)
can have as many as 24 elements.
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Fix an elliptic curve E0 over k, and let E be an elliptic curve over k that becomes isomor-
phic to E0 over k

al. Choose an isomorphism ϕ : E0 → E over kal. For any σ ∈ Gal(kal/k),
we obtain a second isomorphism σϕ =df σ ◦ ϕ ◦ σ−1 : E0 → E over kal. For example, if ϕ
is (x : y : z) �→ (c2x : c3y : z), then σϕ is (x : y : z) �→ ((σc)2x : (σc)3y : z). The two
isomorphisms ϕ, σϕ : E0 → E (over kal) differ by an automorphism of E0 over k

al:

σϕ = ϕ ◦ α(σ), α(σ) ∈ Autkal(E0, O).

Note that

(στ )ϕ = σ(τϕ) = σ(ϕ ◦ α(τ )) = ϕ ◦ α(σ) ◦ σα(τ ),
and so α is a crossed homomorphism Gal(kal/k) → Autkal(E0, O). Choosing a different
isomorphism ϕ replaces α(σ) by its composite with a principal crossed homomorphism.

Theorem 17.10. The map E �→ [α] defines a one-to-one correspondence

{elliptic curves over k, isomorphic to E0 over k
al}/≈ 1:1←→ H1(Gal(kal/k),Autkal(E0)).

Proof. The proof is similar to that of Theorem 17.4.

Corollary 17.11. If j(E0) �= 0, 1728, then the list of twists of E0 in Example 17.7 is
complete.

Proof. In this case, Autkal(E,O) = µ2, and so, according to Example 12.7,
H1(Gal(kal/k), µ2) = k×/k×2. Under the correspondence in the theorem, Ed ↔ d
mod k×2.

Remark 17.12. The same arguments can be used to obtain the description of the twisted
multiplicative groups on p25. The only endomorphisms of Gm = A1 \ {0} are the maps
t �→ tm, some fixed m ∈ Z. Hence End(Gm) = Z and Aut(Gm) = (End(Gm))

× = {±1}.
The twisted forms of Gm are classified by H1(k, {±1}) = H1(k, µ2) = k

×/k×2. The twisted
multiplicative group corresponding to a ∈ k×/k×2 is Gm[a].

Remark 17.13. Let Aut(E) be the group of all automorphisms of E, not necessarily pre-
serving O. The map Q �→ tQ, where tQ is the translation P �→ P + Q, identifies E(k) with
a subgroup of Aut(E). I claim that Aut(E) is a semi-direct product,

Aut(E) = E(k) 
 Aut(E,O),

that is, that

(a) E(k) is a normal subgroup of Aut(E);
(b) E(k) ∩Aut(E,O) = {0};
(c) Aut(E) = E(k) · Aut(E,O).

Let Q ∈ E(k) and let α ∈ Aut(E,O). As we noted above, α is a homomorphism, and so,
for any P ∈ E,

(α ◦ tQ ◦ α−1)(P ) = α(α−1(P ) +Q) = P + α(Q) = tα(Q)(P ).

Therefore α ◦ tQ ◦ α−1 = tα(Q), which implies (a). Assertion (b) is obvious. For (c), let
γ ∈ Aut(E), and let γ(0) = Q; then γ = tQ ◦ (t−Q ◦ γ), and t−Q ◦ γ ∈ Aut(E,O).
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Curves of genus 1. Let W be a principal homogeneous space for an elliptic curve E over
k. Then W becomes isomorphic to E over kal, and so W is projective, nonsingular, and of
genus 1 (at least over kal, which implies that it is also over k). The next theorem shows
that, conversely, every projective nonsingular curveW of genus 1 over k occurs as a principal
homogeneous space for some elliptic curve over k.

Theorem 17.14. Let W be a nonsingular projective curve over k of genus 1. Then there
exists an elliptic curve E0 over k such that W is a principal homogeneous space for E0.
Moreover, E0 is unique up to an isomorphism (over k).

Proof. (Sketch). By assumption, there exists an isomorphism ϕ : W → E from W to an
elliptic curve E over kal, which we may suppose to be in our standard form

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ k, ∆ = 4a3 + 27b2 �= 0.

Let σ ∈ Gal(kal/k). Then σϕ is an isomorphism σW → σE. Here σW and σE are
obtained from W and E by applying σ to the coefficients of the polynomials defining them
(so E = E(σa, σb)). But W is defined by polynomials with coefficients in k, and so σW =
W . Therefore E ≈ W ≈ σE, and j(E) = j(σE) = σj(E). Since this is true for all
σ ∈ Gal(kal/k), we have that j(E) ∈ k. Now (see bottom of p51) there is a curve E0 over k
with j(E0) = j(E). In fact, there will be many such curves over k, and so we have to make
sure we have the correct one.

Choose an isomorphism ϕ : E0 → W over kal, and for σ ∈ Gal(kal/k), let σϕ = ϕ ◦ α(σ)
where α(σ) ∈ Autkal(E0). Then σ �→ α(σ) is a crossed homomorphism into Autkal(E0),
and hence defines a class [α] in H1(k,Autkal(E0)). According to (17.13) there is an exact
sequence

1 → E0(k
al) → Autkal(E0) → Autkal(E0, O) → 1.

If [α] lies in the subgroup H1(k, E0) of H
1(k,Autkal(E0)), thenW is a principal homogeneous

space for E0. If not, then we use the image of [α] in H1(k,Autkal(E0)) to twist E0 to obtain
a second curve E1 over k with the same j-invariant. Now one can check that the class of the
crossed homomorphism [α] lies in H1(k, E1), and so W is a principal homogeneous space for
E1.

The curve E0 given by the theorem is called the Jacobian of W . It is characterized by
having the following property: there is an isomorphism ϕ : E0 → W over kal such that, for
all σ ∈ Gal(kal/k), there exists a point Qσ ∈ E0(kal) such that

(σϕ)(P ) = ϕ(P +Qσ), all P ∈ E(kal).
Remark 17.15. In the above proof we spoke of a crossed homomorphism into Autkal(E0),
which need not be an abelian group. However, one can still define H1(G,M) whenM is non-
abelian as follows. WriteM multiplicatively. As in the abelian case, a crossed homomorphism
is a map f : G→ M such that f(στ ) = f(σ)·σf(τ ). Call two crossed homomorphisms f and
g equivalent if there exists an m ∈ M such that g(σ) = m−1 · f(σ) · σm, and let H1(G,M)
be the set of equivalence classes of crossed homomorphisms. It is a set with a distinguished
element, namely, the map σ �→ 1.

Exercise 17.16. Find the Jacobian of the curve

W : aX3 + bX3 + cY 3 = 0, a, b, c ∈ Q×.
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[First, by a change of variables over Qal, obtain an isomorphism W ≈ E where E is an
elliptic curve over Qal in standard form. Second, write down an elliptic curve E0 over Q in
standard form that becomes isomorphic to E over Q. Third, modify E0 if necessary so that
it has the property characterizing the Jacobian.]

The classification of elliptic curves over Q (summary). Let (E,O) be an elliptic curve
over Q. We attach to it the invariant j(E) ∈ Q. Every element of Q occurs as the j-invariant
of an elliptic curve over Q, and two elliptic curves over Q have the same j-invariant if and
only if they become isomorphic over Qal. See (10.15) et seq..

Fix a j ∈ Q, and consider the elliptic curves (E,O) over Q with j(E) = j. The iso-
morphism classes of such curves are in one-to-one correspondence with the elements of
H1(Q,Aut(E,O)). For example, if j �= 0, 1728, then Aut(E,O) = µ2, H

1(Q,Aut(E,O)) =
Q×/Q×2, and the curve corresponding to d ∈ Q× is the curve Ed of Example 17.7.

Fix an elliptic curve (E,O) over Q, and consider the curves of genus 1 over Q having E as
their Jacobian. Such a curve has the structure of a principal homogeneous space for E, and
every principal homogeneous space for E has E as its Jacobian. The principal homogeneous
spaces for E are classified by the group H1(Q, E), which is a very large group.

Every curve of genus 1 over Q occurs as the Jacobian of an elliptic curve over Q, and
hence as a principal homogeneous space.

Consider the exact sequence of torsion groups

0 → TS(E/Q) → H1(Q, E) → ⊕p,∞H1(Qp, E) → C → 0.

Endow each group with the discrete topology. Cassels has shown that the Pontryagin dual
of this sequence has the form

0 ← TS(E/Q) ← Θ ← ∏
p,∞
H1(Qp, E) ← Ê(Q) ← 0,

where Ê(Q) is the completion of E(Q) for the topology for which the subgroups of finite
index form a fundamental system of neighbourhoods of 0, provided that TS(E/Q) is finite.

Exercise 17.17. Find the Jacobian of the curve

W : aX3 + bY 3 + cZ3 = 0, a, b, c ∈ Q×.

[Hint: The curve E : X3 + Y 3 + dZ3 = 0, d ∈ Q×, has the point O : (1 : −1 : 0)—the pair
(E,O) is an elliptic curve over Q. It can be put in standard form by the change of variables
X = X ′ + Y ′, Y = X ′ − Y ′.]

18. The Tate-Shafarevich Group; Failure Of The Hasse Principle

We discuss a family of curves whose the Tate-Shafarevich groups are nonzero, and which
therefore give examples of elliptic curves for which the Hasse principle fails. Full details on
what follows can be found in [S1], pp309–318.

Proposition 18.1. If p ≡ 1 mod 8, then the 2-Selmer group S(2)(E/Q) of the elliptic curve

E : Y 2Z = X3 + pXZ2

is isomorphic to (Z/2Z)3.
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The family of curves in the statement is similar to that in Exercise 16.10(2), but since only
one of the points of order 2 on E have coordinates in Q, we don’t have a simple description
of H1(Q, E2). Of course, one can pass to Q[

√
p], but it is easier to proceed as follows. One

shows that there is a second curve E ′ and homomorphisms

E
φ−→ E ′ ψ−→ E

whose composite is multiplication by 2 and such that the kernel of φ is the subgroup of E
generated by P = (0 : 0 : 1). From the study of the cohomology sequences of

0 →<P> → E(Qal)
φ−→ E ′(Qal) → 0

and

0 → Kerψ → E ′(Qal)
ψ−→ E(Qal) → 0

one can draw information about E(Q)/2E(Q), S(2)(E/Q), TS(E/Q)2. For example, Lemma
13.2 applied to the maps

E(Q)
φ−→ E ′(Q)

ψ−→ E(Q)

shows that there is an exact sequence:

E(Q)/φ(E(Q)) → E(Q)/2E(Q) → E(Q)/ψ(E(Q)) → 0.

Since E(Q)2 ≈ Z/2Z,

rank(E(Q)) + dimF2 TS(E/Q)2 = dimF2 S
(2)(E/Q)− 1.

Thus r = 0, 1, or 2, but r = 1 is conjecturally ruled out: Cassels has shown that TS(E/Q)
carries a nondegenerate alternating form if it is finite, and the existence of such a form
implies that dimF2(TS(E/Q)) is even. 21

Proposition 18.2. Let E be as in ( 18.1). If 2 is not a fourth power modulo p, then
rank(E(Q)) = 0 and TS(E/Q)2 ≈ (Z/2Z)2.

Remark 18.3. It is, of course, easy (for a computer) to check for any particular prime
whether 2 is a fourth power modulo p, but Gauss found a more efficient test.

From Math 593, we know that the ring of Gaussian integers, Z[i], is a principal ideal
domain. An odd prime p either remains prime in Z[i] or it factors p = (A+ iB)(A− iB). In
the first case, Z[i]/pZ[i] is an field extension of Fp of degree 2. Therefore p remains prime
if and only if Fp doesn’t contain a primitive 4th root of 1. Because F×

p is cyclic, it contains
an element of order 4 if and only if 4 divides its order. Therefore the second case occurs if
and only if 4|p− 1. We conclude that a prime p ≡ 1 mod 4 can be expressed p = A2 +B2,
A,B ∈ Z.

Gauss showed that for a prime p ≡ 1 mod 8, 2 is a 4th power modulo p if and only if
8|AB. Therefore, p satisfies the hypotheses of the proposition if p is

17 = 12 + 42, 41 = 52 + 42, 97 = 92 + 42, 193 = 72 + 122...

The proof of this, which is quite elementary, can be found in [S1], p318. Number theorists
will wish to prove that there are infinitely many such primes p (and find their density).

21Recall from Math 593 that a vector space carrying a nondegenerate skew-symmetric form has even
dimension, provided the field is of characteristic �= 2. When the form is assumed to be alternating, i.e.,
ψ(x, x) = 0 for all x, then the condition on the characteristic is unnecessary.
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It is very difficult to show directly that the rank of an elliptic curve is smaller than the
bound given by the Selmer group. Instead, in this case, one exhibits 3 nontrivial elements
of TS(E/Q)2. They are:

Y 2 = 4pX4 − 1, ±Y 2 = 2pX4 − 2.

One can (no doubt) check directly that these three curves are principal homogeneous spaces
for E : Y 2Z = X3 + pZ3, but it can be more easily seen from the proof of Proposition 18.1
([S1] 6.2b).

Remark 18.4. We should explain what we mean by these curves. Consider, more generally,
the curve

C : Y 2 = aX4 + bX3 + cX2 + dX + e

where the polynomial on the right has no repeated roots. Assume that the characteristic is
�= 2, 3. Then this is a nonsingular affine curve, but its projective closure

C ′ : Y 2Z2 = aX4 + bX3Z + cX2Z2 + dXZ3 + eZ4

is singular: on setting Y = 1, we obtain the equation

Z2 = homogeneous polynomial of degree 4,

which is visibly singular at (0, 0). Recall (p9) that the genus of a plane projective curve of
degree d is

g =
(d− 1)(d − 2)

2
− ∑

P singular

δP .

For P = (0, 0), δP = 2, and so the genus of C ′ is 3−2 = 1. When one “blows up” the singular
point, one obtains a nonsingular curve and a regular map C ′′ → C ′ that is an isomorphism
except over the singular point. It is really C ′′ that one means when one writes C .

We shall prove that the curve

C : Y 2 = 2− 2pX4

has no points in Q, but has points in R and Qp for all p. For this we shall need to use the
quadratic reciprocity law. For an integer a not divisible by the prime p, the Legendre symbol(
a
p

)
= +1 or −1 according as a is, or is not, a square modulo p.

Theorem 18.5 (Quadratic reciprocity law). For odd primes p, q,(
p

q

)(
q

p

)
= (−1) p−1

2
q−1
2 .

Moreover, (
2

p

)
= (−1) p2−1

8 .

Proof. The theorem surely has more published proofs than any other in mathematics. The
first proofs were found by Gauss. Most introductory books on number theory contain a
proof.
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Proof. We now prove that

C : Y 2 = 2− 2pX4

has no points with coordinates in Q. Suppose (x, y) is a point on the curve. Let x = r/t
with r and t integers having no common factor. Then

y2 =
2t4 − 2pr4

t4
.

The numerator and denominator on the right again have no common factor, and so y = 2s/t2

for some integer s with

2s2 = t4 − pr4.

Let q be an odd prime dividing s. Then t4 ≡ pr4 mod q, and so
(
p
q

)
= 1. According to the

quadratic reciprocity law, this implies that
(
q
p

)
= 1. From the quadratic reciprocity law,(

2
p

)
= 1, and so all prime factors of s are squares modulo p. Hence s2 is a 4th power modulo

p. The equation

2s2 ≡ t4 mod p

now shows that 2 is a 4th power modulo p, which contradicts our hypothesis.

We should also make sure that there is no point lurking at infinity. The projective closure
of C is

C ′ : Y 2Z2 = 2Z4 − 2pX4,

and we have just shown that C ′ has no rational point with Z = 1. For Z = 0, the equation
becomes

2Z4 − 2pX4 = 0

which clearly has no rational solution. Since the nonsingular version C ′′ of C ′ maps to C ′,
it can’t have a rational point either.

The curveC obviously has points in R. In order to prove that C has a point in Qq it suffices
(by Hensel’s lemma) to show that the reduction C̄ of C modulo the prime q has a nonsingular
point with coordinates in Fq. For q �= 2, p, the (affine) curve C has good reduction at q, and
the results of the next section will show that it has a point with coordinates in Fp (at least
for q not too small). Therefore, C automatically has a point with coordinates in Qq except
for q = 2, p, and perhaps a few additional small primes. The verification for these fields can
safely be left to the reader (or the reader’s computer).

19. Elliptic Curves Over Finite Fields

As usual, Fp is the field Z/pZ with p elements, F is a fixed algebraic closure of Fp, and Fpn

is the (unique) subfield of F with pn elements. The elements of Fpn are the roots of Xpn −X,
and Fpm ⊂ Fpn if and only if m|n (see Math 594).
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The Frobenius map; curves of genus 1 over Fp. Let C be a plane projective curve over
Fp, so that C is defined by an equation

F (X, Y, Z) =
∑

i+j+k=d

aijkX
iY jZk, aijk ∈ Fp.

If P = (x : y : z), x, y, z ∈ F, lies on C , then∑
i+j+k=d

aijkx
iyjzk = 0.

On raising this equation to the pth power, remembering that we are in characteristic p and
that ap = a for all a ∈ Fp, we obtain the equation∑

i+j+k=d

aijkx
ipyjpzkp = 0,

which says that (xp : yp : zp) also lies on C . We therefore obtain a map (x : y : z) �→ (xp :
yp : zp) : C → C , which, being defined by polynomials, is regular. It is called the Frobenius
map.

Proposition 19.1. For any elliptic curve E over Fp, H
1(Fp, E) = 0. Therefore, every

principal homogeneous space for E is trivial.

Proof. Let Γ be the Galois group of F over Fp. We have to show that every continuous
crossed homomorphism f : Γ → E(F) is principal.

We first determine the structure of Γ. The map a �→ ap is an automorphism of F, which
we call the Frobenius automorphism, and denote σ. As we noted above, for each n ≥ 1,
Fp has a unique extension of degree n contained in F, namely, Fpn . Moreover, Fpn , being
the splitting field of Xpn − X, is Galois over Fp, and Gal(Fpn/Fp) is generated by σ|Fpn.
Therefore, by infinite Galois theory, for each n ≥ 1, Γ has a unique open subgroup Γn of
index n, and Γ/Γn is generated by σΓn. It follows that σ has infinite order, and that Γ is the
closure of the subgroup generated by σ—we say that σ generates Γ as a topological group.
Note that for P = (x : y : z) ∈ E(F), and ϕ : E → E the Frobenius map,

ϕ(P ) = (xp : yp : zp) = (σx : σy : σz) = σP.

Now consider a crossed homomorphism f : Γ → E(F). The map P �→ ϕ(P ) − P is a
nonconstant regular map E → E; it therefore induces a surjective22 map E(F) → E(F). In
particular, there exists a P ∈ E(F) such that ϕ(P )−P = f(σ), i.e., such that f(σ) = σP−P.
Then

f(σ2) = f(σ) + σf(σ) = σP − P + σ2P − σP = σ2P − P,
· · ·

f(σn) = f(σ) + σf(σn−1) = σP − P + σ(σn−1P − P ) = σnP − P.
Therefore f and the principal crossed homomorphism τ �→ τP − P agree on σn for all n.
Because both crossed homomorphisms are continuous, this implies that they agree on the
whole of Γ.

22Any nonconstant regular map ϕ : C → C ′ from a connected projective curve to an irreducible curve is
surjective as a map of algebraic curves (this implies that C(kal) → C ′(kal) is surjective, but not necessarily
that C(k) → C ′(k) is surjective): because C is projective the image of ϕ is Zariski-closed; because C ′ is
connected, its only proper Zariski-closed subsets are finite; therefore, ϕ(C) �= C ′ =⇒ ϕ(C) is finite =⇒
ϕ(C) = a single point (because C is connected) =⇒ ϕ is constant.
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Corollary 19.2. A nonsingular projective curve C of genus 1 over Fp has a point with
coordinates in Fp.

Proof. According to (17.14), the curve C is a principal homogeneous space for its Jacobian
E, and according to the Proposition, it is a trivial principal homogeneous space, i.e., C(Fp) �=
0.

I next want to prove the Riemann hypothesis for an elliptic curve, namely, that if N is
the number of points on the elliptic curve E with coordinates in Fp, then |N −p−1| ≤ 2

√
p.

However, first I’ll explain why this statement is called the Riemann hypothesis, which involves
reviewing some of the formalism of zeta functions.

Zeta functions of number fields. First recall that the original (Riemann’s) Riemann zeta
function is

ζ(s) =
∏

p prime

1

1− p−s =
∑
n≥1
n−s, s complex, -(s) > 1.

The second equality is an expression of unique factorization:

ζ(s) =
∏
p

1

1− p−s =
∏
p

(
1 + p−s + (p−s)2 + (p−s)3 + · · ·

)
;

on multiplying out this product, we obtain a sum of terms

(p−s1 )r1(p−s2 )r2 · · · (p−st )rt = (pr11 · · · prtt )−s.
Both the sum and the product converge for -(s) > 1, and so ζ(s) is holomorphic and

nonzero for -(s) > 1. In fact, ζ(s) extends to a meromorphic function on the whole complex
plane with a simple pole at s = 0. Moreover, the function ξ(s) = π−

s
2Γ( s

2
)ζ(s) satisfies the

functional equation ξ(s) = ξ(1−s), has simple poles at s = 0, 1, and is otherwise holomorphic.
Since Γ(s) has poles at s = 0,−1,−2,−3, . . . , this forces ζ to be zero at s = −2n, n > 0,
n ∈ Z. These are called the trivial zeros of the zeta function.

Conjecture 19.3 (Riemann hypothesis). The nontrivial zeros of ζ(s) lie on the line
-(s) = 1

2
.

This is perhaps the most famous problem remaining in mathematics.

Dedekind extended Riemann’s definition by attaching a zeta function ζK(s) to any number
field K. He defined

ζK(s) =
∏
p

1

1− N(p)−s
=
∑
a

N(a)−s, s complex, -(s) > 1.

The first product is over the nonzero prime ideals in K, and the second is over all ideals in
OK . The numerical norm Na of an ideal a is the order of the quotient ring OK/a. The proof
of the second equality uses that every nonzero ideal a has a unique factorization a =

∏
prii

into a product of powers of prime ideals, and that N(a) =
∏

N(pi)
ri. Note that for K = Q,

this definition gives back ζ(s). The function ζK(s) extends to a meromorphic function on
the whole complex plane with a simple pole at s = 1. Moreover, a certain multiple ξK(s)
of it satisfies a functional equation ξK(s) = ξK(1 − s). It is conjectured that ζK(s) has its
nontrivial zeros on the line -(s) = 1

2
.
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Zeta functions of affine curves over finite fields. Consider a plane affine curve

C : f(X, Y ) = 0

over the field Fp. In analogy with the above definition, we set

ζ(C, s) =
∏
p

1

1− Np−s , -(s) > 1,

where p runs over the nonzero prime ideals in Fp[C ] =df Fp[X, Y ]/(f(X, Y )) = Fp[x, y]. For
any nonzero prime ideal p of Fp[C ], the quotient Fp[C ]/p is finite, and so we can again define
Np to be its order.

Because Fp[C ]/p is finite and an integral domain, it is a field (and p is maximal). We
define deg p to be the degree of Fp[C ]/p over Fp, so that Np = pdeg p. This allows us to make
a change of variables in the zeta function: when we define

Z(C, T ) =
∏
p

1

1− T degp ,

then

ζ(C, s) = Z(C, p−s).

Here Z is a capital zeta. The product
∏ 1

1−T degp converges for all small T , but generally we
simply regard it as a formal power series

Z(C, T ) =
∏
p

(1 + T deg p + T 2deg p + T 3deg p + · · · ) ∈ Z[[T ]].

In the following, I will often make use of the fact that many of the identities in Math 115
involving power series are valid for power series over any ring. For example, we can define
log(1 + t) to be the power series

log(1 + t) = t− t
2

2
+
t3

3
− t

4

4
+
t5

5
− · · · ,

and then

log
1

1− t = − log(1− t) = t+ t
2

2
+
t3

3
+
t4

4
+ · · · .

Computation of the zeta function of A1. To fit it into the above scheme, we can regard A1

as the curve Y = 0, and so

Fp[A
1] = Fp[X, Y ]/(Y ) = Fp[X].

The nonzero (prime) ideals on Fp[X] are in one-to-one correspondence with the monic (irre-
ducible) polynomials f(X) ∈ Fp[X], and so

Z(A1, T ) =
∏

f monic irreducible

1

1− T degf .

Take the log of both sides,

logZ(A1, T ) = −∑
f

log(1− T degf ),
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and then the derivatives

Z ′(T )
Z(T )

=
∑
f

deg f · T deg f−1
1− T deg f

=
∑
n≥0,f

deg f · T (n+1)deg f−1.

In this power series, the coefficient of Tm−1 is
∑
deg f , where f runs over all monic irreducible

polynomials f ∈ Fp[T ] of degree dividingm. Note that deg f |m if and only if all of the roots
of f lie in Fpm , and that, conversely, every element of Fpm is the root of a polynomial of
degree dividing m. Therefore, the coefficient of Tm−1 is pm, and we have

Z ′(T )
Z(T )

=
∑
pmTm−1.

On integrating, we find that

logZ(A1, T ) =
∑ pmTm

m
= log

1

1− pT .
We have shown:

Proposition 19.4. The zeta function of A1 has the property that

logZ(A1, T ) =
∑ #A1(Fpm)Tm

m

and so

Z(A1, T ) =
1

1− pT .

Expression of Z(C, T ) in terms of the points of C. Let C be an affine curve over Fp.
As for A1,

Z ′(C, T )
Z(C, T )

=
∑
p

deg p · T degp−1
1− T deg p

=
∑
n≥0,p

deg p · T (n+1) deg p/T.

In this power series, the coefficient of Tm−1 is
∑
deg p where p runs over the prime ideals of

k[C ] such that deg p divides m. But deg p =df [Fp[C ]/p : Fp], and so the condition deg p|m
means that there is a homomorphism Fp[C ]/p ↪→ Fpm—there will in fact be exactly deg p such
homomorphisms (because Fp[C ]/p is separable over Fp). Conversely, any homomorphism
Fp[C ] → Fpm factors through Fp[C ]/p for some prime ideal with deg p|m. Therefore, the
coefficient of Tm−1 in the above power series is the number of homomorphisms (of Fp-
algebras)

Fp[C ] → Fpm .

But Fp[C ] = Fp[X, Y ]/(f(X, Y )), and so a homomorphism Fp[C ] → Fpm is determined by the
images a, b of X, Y , and conversely the homomorphism P (X, Y ) �→ P (a, b) : Fp[X, Y ] → Fpm

determined by a pair a, b ∈ Fpm factors through Fp[X, Y ]/(f(X, Y )) if and only if f(a, b) = 0.
Therefore there is a natural one-to-one correspondence

{homomorphisms Fp[C ] → Fpm} 1:1↔ C(Fpm).

We have proved:
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Proposition 19.5. The zeta function of an affine curve C has the property that

logZ(C, T ) =
∑
Nm
Tm

m
, Nm = #C(Fpm).

In other words,

Z(C, T ) = exp(
∑
m≥1
Nm
Tm

m
),

where

expT = 1 + T +
T 2

2!
+ · · ·+ T

n

n!
+ · · · .

Zeta functions of plane projective curves. For a plane projective curve C (in fact, an
arbitrary curve) over Fp one usually defines Z(C, T ) to be the power series such that

logZ(C, T ) =
∑
Nm(C)

Tm

m
, Nm(C) = #C(Fpm),

and then one defines

ζ(C, s) = Z(C, p−s).

If C = C0 ∪ C1, then

Nm(C) = Nm(C0) +Nm(C1)−Nm(C0 ∩ C1),

and so

ζ(C, s) =
ζ(C0, s)ζ(C1, s)

ζ(C0 ∩ C1, s) .

Thus, ζ(C, s) can also be expressed as a product of terms 1
1−Np−s .

For example,

Nm(P
1) = Nm(A

1) + 1, for all m,

and so

logZ(P1, T ) = logZ(A1, T ) + log
1

1− T .

Therefore

Z(P1, T ) =
1

1− T Z(A
1, T ) =

1

(1− T )(1− pT ) .

Similarly, for E an elliptic curve over Fp and E
aff the affine curve E ∩ {Z �= 0},

Z(E, T ) =
1

1− T Z(E
aff, T ).
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The rationality of the zeta function of an elliptic curve.

Theorem 19.6. Let E be an elliptic curve over Fp. Then

Z(E, T ) =
1 + (N1 − p− 1)T + pT 2

(1− T )(1− pT ) , N1 = N1(E).

Remark 19.7. (a) Factor

1 + (N1 − p− 1)T + pT 2 = (1− αT )(1− βT ),
so that α, β are algebraic integers such that

N1 − p− 1 = −α− β, αβ = p.

Then

logZ(E, T ) = log
(1− αT )(1− βT )
(1− T )(1− pT ) =

∑
(1 + pm − αm − βm)T

m

m
,

and so

Nm(E) = 1 + pm − αm − βm.
Thus, if one knows N1, one can find α and β, and the whole of the sequence

N1(E), N2(E), N3(E), . . . .

(b) With the notation in (a),

ζ(E, s) =
(1− αp−s)(1− βp−s)
(1− p−s)(1− p1−s) .

It has simple poles at s = 0 and s = 1, and zeros where ps = α and ps = β. Write s = σ+ it.
Then |ps| = pσ, and the zeros of ζ(E, s) have real part 1

2
if and only if α and β have absolute

value p
1
2 .

By definition α and β are the roots of a polynomial

1 + bT + pT 2, b = N1 − p− 1.

If b2 − 4p ≤ 0, then α and β are complex conjugates. Since their product is p, this implies
that they each have absolute value p

1
2 . Conversely, if |α| = p1

2 = |β|, then
|N1 − p− 1| = |α + β| ≤ 2

√
p.

Thus, granted Theorem 19.6, the Riemann hypothesis for E is equivalent to the statement

|N1 − p− 1| ≤ 2
√
p.

Exercise 19.8. (a) Prove that the zeta function of an elliptic curve E over Fp satisfies the
functional equation

ζ(E, s) = ζ(E, 1− s).
(b) Compute the zeta functions for the curve

E : Y 2Z + Y Z2 = X3 −X2Z

over the fields F2, F3, F5, F7, and verify the Riemann hypothesis in each case. How many
points does the curve have over the field with 625 elements?
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I outline some of the ideas that go into the proof of the theorem. First consider Z(A1, T )
again. By definition

Z(A1, T ) =
∏
f

1

1− T degf
=

∏
f

(1 + T deg f + T 2deg f + T 3deg f + · · · ),

where the product is over the monic irreducible polynomials in Fp[X]. On multiplying out
we obtain a formal power series that is a sum of terms of the form

T r1 deg f1 · · ·T rt deg ft .

The coefficient of Tm is the number sequences (r1, f1), . . . , (rt, ft) such that
∑
ri deg fi = m.

Because unique factorization holds in Fp[X], we can identify such a sequence with a monic
polynomial

∏
f rii of degree m. Therefore, the coefficient of Tm is the number of monic

polynomials in Fp[X] of degree m. This is p
m, and so

Z(A1, T ) =
∑
pmTm =

1

1− pT .

Hence (again),

Z(P1, T ) =
1

1− T Z(A
1, T ) =

1

(1− T )(1− pT ) .

Now consider an elliptic curve E over Fp. Here

Z(E, T ) =
1

1− T Z(E
aff, T )

=
1

1− T
∏
p

1

1− T deg p ,

where the p run through the prime ideals of

Fp[E
aff] = Fp[X, Y ]/(Y

2 −X3 − aX − b).
On multiplying the product out and applying the Riemann-Roch theorem (see below), we
find that

Z(E, T ) =
∑
dmT

m

where d0 = 1 and dm = N1
pm−1
p−1 . Therefore,

Z(T ) = 1 +
∑
m>0

N1
pm − 1

p− 1
Tm

=
N1
p− 1

(
1

1− pT − 1

1− T
)
+ 1

=
N1
p− 1

(
(p− 1)T

(1− pT )(1− T )
)
+ 1

=
1 + (N1 − p− 1)T + pT 2

(1− T )(1− pT ) .
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Application of the Riemann-Roch theorem. In this subsection, we explain how the Riemann-
Roch theorem leads to the above formula for dm. Consider an elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ k, ∆ �= 0,

over a field k. Write Eaff for the affine curve

Y 2 = X3 + aX + b.

A divisor on E is a finite sum

D =
∑
ripi

with ri ∈ Z and pi either a nonzero prime ideal in k[Eaff] or another symbol p∞ (the “prime
divisor corresponding to the point at infinity”). A divisor D =

∑
ripi is positive if ri ≥ 0

for all i. The degree of p is the degree of the field extension [k[Caff]/p : k] if p �= p∞, and is
1 if p = p∞. We extend the definition to all divisors by linearity:

degD =
∑
ri deg pi.

The ring k[Eaff] is a Dedekind domain, and so, for each prime ideal p, the localization
k[Eaff]p is a principal ideal domain with a single prime element (up to associates). Therefore,
corresponding to such a prime ideal, we obtain a valuation ordp : k(E)

× → Z—if f ∈ k[Eaff],
(f) =

∏
pordp(f). Similarly, there is a valuation ordp∞ : k(E)× → Z measuring the order of

the zero or pole of f at infinity. The divisor of an f ∈ k(E)× is

(f) =
∑

ordp(f)p.

For a divisor D, define

L(D) = {f ∈ k(E)× | (f) +D ≥ 0} ∪ {0}.
Theorem 19.9 (Riemann-Roch). For any divisor D, L(D) is a finite-dimensional vector
space over k, and if degD ≥ 1, then

dimL(D) = degD.

We need to restate this slightly. Fix D0, and consider the set P (D0) of all divisors D such
that

(a) D ≥ 0,
(b) D ∼ D0, i.e., D = D0 + (f) for some f ∈ k(E)×.

Then

f �→ D0 + (f) : L(D0) \ {0} → P (D0)

is surjective, and two functions have the same image if and only if one is a constant multiple
of the other. We therefore have a bijection

(L(D0) \ {0})/k× → P (D0).

In the case that k = Fq and degD0 = m ≥ 1, the Riemann-Roch theorem implies that
P (D0) has

qm − 1

q − 1

elements.
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Remark 19.10. The map sending (a, b) in Eaff(k) to the ideal pa,b =df (x−a, y−b) ⊂ k[Eaff]
(ideal of all regular functions on Eaff zero at (a, b)) is a one-to-one correspondence

Eaff(k)
1:1↔ {nonzero prime ideals in k[Eaff] of degree 1}.

When k is algebraically closed, all prime ideals in k[Eaff] have degree 1, and the definitions
and statements above agree with those in Section 4.

We need two more facts. The degree of a principal divisor (f) is zero, and so the degree
map factors through the quotient group Pic(E) = Div(E)/{(f) | f ∈ k(E)×}. Moreover

PicE
deg−→ Z

is surjective, because p∞ �→ 1. Define

PicmE = {d ∈ Pic(E) | deg d = m}.
Then

(a) the map E(k) → Pic0(E), {
(a : b : 1) �→ pa,b
(0 : 1 : 0) �→ p∞

is an isomorphism of abelian groups (cf. 4.7; this again follows from the Riemann-
Roch theorem);

(b) the map Pic0(E) → Picm(E), d �→ d +mp∞, is a bijection (this is obvious from the
definition of Picm(E)).

We are now able to derive the formula for dm, m ≥ 1. With the above terminology,
the coefficient dm of Tm is the set of positive divisors on E of degree m. In the discussion
following the Riemann-Roch theorem, we saw that each class in Picm(E) has pm−1

p−1 elements,
and there are

#Picm(E)
(b)
= #Pic0(E)

(a)
= #E(Fp) = N1

such classes. Therefore, altogether, there are

N1
pm − 1

p− 1

positive divisors of degree m.

Proof of the Riemann hypothesis for elliptic curves. Let

b = N1 − p− 1.

We have to show that
b2 − 4p ≤ 0.

I’ll only sketch the proof. The details of what follows can be found in [C2], Sections 24, 25,
and most other books on elliptic curves.

Fix an algebraically closed field k. Consider a nonconstant regular map

ϕ : C → C ′

from one irreducible affine curve C to a second (defined over k). Then ϕ being regular means
that it defines a homomorphism

f �→ f ◦ ϕ : k[C ′] → k[C ]
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from the k-algebra of regular functions on C ′ to the k-algebra of regular functions on C .
This map is injective, and so defines map on the fields of fractions

k(C ′) → k(C),

which realizes k(C) as a finite extension of k(C ′). The degree of ϕ is defined to be the degree
of this extension.

Important fact: If k(C) is separable over k(C ′), then ϕ−1(P ) has degϕ points for all but
finitely many P ∈ C(k), i.e., if degϕ = d, then ϕ is “generically” d : 1.

Example 19.11. Consider the map (x, y) �→ x : Eaff(k) → A1(k), where Eaff is the curve

Eaff : Y 2 = X3 + aX + b.

The map on the rings of regular functions is

X �→ x : k[X] → k[x, y] =df k[X, Y ]/(Y
2 −X3 − aX − b).

Clearly k(x, y) = k(x)[
√
x3 + ax+ b], and so the map has degree 2. If characteristic k �= 2,

then the field extension is separable, and the map is 2 : 1 except over the roots of X3+aX+b.

A nonconstant map ϕ : E → E ′ of elliptic curves such that ϕ(0) = 0 is called an isogeny.
An isogeny is automatically a homomorphism, and so its fibres ϕ−1(P ) all have the same
cardinality, which will be degϕ if k(E) is separable over k(E ′).
We need two facts about degrees of isogenies:

(a) deg(ϕ ◦ ψ) = deg(ϕ) · deg(ψ);
(b) deg(ϕ+ ψ) + deg(ϕ− ψ) = 2deg(ϕ) + 2deg(ψ).

The first statement is simply

[k(E) : k(E ′′)] = [k(E) : k(E ′)][k(E ′) : k(E ′′)]

(see Math 594), and the second has a proof that is similar to the proof of the parallelogram
law for the height function.

The second statement implies that deg : End(E) → Z is quadratic (see 15.6), i.e., that

deg(mϕ+ nψ) = am2 + bmn+ cn2, all m,n ∈ Z,

for certain integers a, b, c depending on ϕ and ψ. In fact, on taking (m,n) = (1, 0) or (0, 1),
we see that a = degϕ and c = degψ. Now deg(mϕ+ nψ) ≥ 0 for all m,n. Hence

ar2 + br + c ≥ 0

for all r ∈ Q. From high school algebra, this implies that

b2 − 4ac ≤ 0.

We apply this with ϕ the Frobenius map E → E and ψ the identity map idE . From the
picture

k(x, y)
(x,y) →(xp,yp)−−−−−−−−→ k(x, y)

|2 |2
k(X)

X →Xp−−−−→ k(X)

we see that
degϕ = [k(x, y) : k(xp, yp)] = [k(X) : k(Xp)] = p,
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and clearly deg idE = 1. Therefore

b2 − 4p ≤ 0

where b is such that

deg(ϕ− idE) = degϕ− b+ deg idE = p− b+ 1.

But the kernel of ϕ − id is the set of P ∈ E(k) such that ϕ(P ) = P , i.e., such that
(xp : yp : zp) = (x : y : z), i.e., such that P ∈ E(Fp). Therefore (assuming separability),

deg(ϕ− id) = N1,

and so

−b = N1 − p− 1.

The above inequality becomes

(N1 − p− 1)2 ≤ 4p,

as required.

A Brief History of Zeta. The story begins, as do most stories in number theory, with
Gauss.

Gauss 1801. Consider the elliptic curve

E : X3 + Y 3 + Z3 = 0

over Fp, p �= 3.

If p �≡ 1 mod 3, then 3 doesn’t divide the order of F×
p , and so a �→ a3 is a bijection

F×
p → F×

p . It follows that (x : y : z) �→ (x3 : y3 : z3) is a bijection from E(Fp) onto L(Fp)
where L is the line

L : X + Y + Z = 0.

Therefore

#E(Fp) = #L(Fp) = p + 1.

If p ≡ 1 mod 3, then 4p = A2 + 27B2 where A and B are integers, uniquely determined
up to sign. Fix the sign of A by requiring that A ≡ 1 mod 3. Then Gauss showed that

#E(Fp) = p + 1 + A.

Therefore,

|#E(Fp)− p− 1| = |A| = |4p− 27B2| 1
2 ≤ 2p

1
2 ,

and so the Riemann hypothesis holds for E over Fp, all p �= 3. For details, see Silverman
and Tate, pp110–119.

This result is typical for elliptic curves with complex multiplication.

Emil Artin 1924. In his thesis, Artin defined the zeta function of a curve of the form

C : Y 2 = f(X).

Here Fp(C) = Fp(X)[
√
f ], and so Fp(C) is analogous to a quadratic extension of Q. He proved

that it is a rational function of p−s and satisfies a functional equation, and he checked the
Riemann hypothesis, at least for a few curves.
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F.K. Schmidt 1925–1930. For a nonsingular projective curve C over Fp, define

ζ(C, s) = Z(C, p−s), Z(C, T ) =
∑
m≥1
Nm
Tm

m
, Nm = #C(Fpm).

Using the Riemann-Roch theorem, Schmidt showed (as in the above proof for elliptic curves)
that

Z(C, T ) =
P (T )

(1− T )(1− pT ) , P (T ) = 1 + · · · ∈ Z[T ], degP (T ) = 2g.

Moreover,

Z(
1

pT
) = p1−gT 2−2gZ(T ),

and so
ζ(1− s) = p1−g(p2−2g)−sζ(s).

Write
P (T ) =

∏
(1− αjT ).

Then the formulas show that
Nm = 1 + pm −∑

αmj .

Thus, once one knows α1, . . . , α2g, then one knows Nm for all m. However, unlike the elliptic
curve case, N1 doesn’t determine the αj’s—one needs to know several of the Nm’s.

Hasse 1933/34. Hasse proved that the Riemann hypothesis is true for elliptic curves.

Weil 1940–1948. In 1940, Weil announced a proof of the Riemann hypothesis for all curves,
i.e., that |αi| = √

p for 1 ≤ i ≤ 2g where αi is above. His proof assumed the existence of
a theory of algebraic geometry over arbitrary fields, including the theory of Jacobian and
Abelian varieties, which at the time was known only over C. He spent most of the 1940’s
developing the algebraic geometry he needed, and gave a detailed proof in a book published
in 1948.

Weil 1949/1954. Weil studied zeta functions of some special algebraic varieties, and stated
his famous “Weil conjectures”.

For a nonsingular projective variety V of any dimension over Fp, one can define (as for
curves)

ζ(V, s) = Z(V, p−s), Z(V, T ) =
∑
m≥1
Nm
Tm

m
, Nm = #V (Fpm).

Weil conjectured that Z(V, T ) is a rational function of T , that a “Riemann hypothesis” holds
for ζ(V, s), and that ζ(V, s) satisfies a functional equation—see below for exact statements.
He even hinted that one might be able to prove the rationality by developing a cohomology
theory for algebraic varieties over arbitrary fields, analogous to that provided by algebraic
topology over C, and for which a Lefschetz fixed point formula. At the time, this seemed an
outlandish idea.

Dwork 1960. Dwork gave an “elementary” proof that Z(V, T ) is a rational function of T .

Grothendieck et al 1963/64. Grothendieck defined étale cohomology and, with the help of
M. Artin and Verdier, developed it sufficiently to prove that Z(V, T ) is rational and satisfies
a functional equation. The rationality follows from a “Lefschetz fixed point formula”, and
the functional equation from “Poincaré duality” theorem.
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Deligne 1973. Deligne used étale cohomology to prove the remaining Weil conjecture,
namely, the Riemann hypothesis. For this, he received the Fields medal.

In summary, the results of Grothendieck, Artin, Verdier, and Deligne show that, for a
nonsingular projective variety V over Fp,

Z(V, T ) =
P1(T )P3(T ) · · ·P2d−1(T )

(1− T )P2(T )P4(T ) · · ·P2d−2(T )(1− pdT )

where d = dimV and Pi(T ) ∈ Z[T ]. Moreover

Z(V,
1

pdT
) = ±T χpdχ/2Z(V, T )

where χ is the self-intersection number of the diagonal in V ×V . Finally (Riemann hypoth-
esis):

Pi(T ) =
∏
(1− αijT ), |αij| = pi/2.

This last statement says that ζ(V, s) has its zeros on the lines

-(s) = 1

2
,
3

2
, . . . ,

2d − 1

2

and its poles on the lines

-(s) = 0, 1, 2, . . . , d.

Exercise 19.12. (a) Let E be the elliptic curve

E : Y 2Z = X3 − 4X2Z + 16Z3.

Compute Np =df #E(Fp) for all primes 3 ≤ p ≤ 13 (more if you use a computer).

(b) Let F (q) be the (formal) power series given by the infinite product

F (q) = q
∞∏
n=1

(1− qn)2(1− q11n)2 = q − 2q2 − q3 + 2q4 + · · · .

Calculate the coefficientMn of qn in F (q) for n ≤ 13 (more if you use a computer).

(c) For each prime p, compute the sum Mp + Np. Formulate a conjecture as to what
Mp +Np should be in general.

(d) Prove your conjecture. [This is probably very difficult, perhaps even impossible, using
only the information covered in the course.]

[[Your conjecture is, or, at least, should be a special case of a theorem of Eichler and
Shimura. Wiles’s big result is that the theorem of Eichler and Shimura applies to virtually
all elliptic curves over Q.]]
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20. The Conjecture of Birch and Swinnerton-Dyer

Introduction. We return to the problem of computing the rank of E(Q). Our purely
algebraic approach provides only an upper bound for the rank, via the Selmer group, and
the difference between the upper bound and the actual rank is measured by the mysterious
Tate-Shafarevich group. It is very difficult to decide whether an element of S(2)(E/Q) comes
from an element of infinite order, or survives to give a nontrivial element of TS(E/Q)—in
fact, there is no (proven) algorithm for doing this. Clearly, it would be helpful to have
another approach.

One idea is that perhaps the rank E(Q) should be related to the orders of the groups
Ē(Fp). For any good prime p, there is a reduction map

E(Q) → Ē(Fp)

but, in general, this will be far from injective or surjective. For example, if E(Q) is infinite,
then so also is the kernel, and if E(Q) is finite (and hence has order ≤ 18) then it will fail
to be surjective for all large p (because #Ē(Fp) ≥ p + 1− 2

√
p).

Let E be an elliptic curve over Q. For each prime p where E has good reduction, I write
(in contradiction to the notations of the last section)

Np = #Ē(Fp)

where Ē denotes the reduction of E over Fp.

In the late fifties, Birch and Swinnerton-Dyer had the idea that if E(Q) is large then this
should force the Np’s to be “large”. Since they had access to one of the few computers
then in existence, they were able to test this experimentally. For P a large number (large,
depending on the speed of your computer), let

f(P ) =
∏
p≤P

Np

p
.

Recall that Np is approximately p. Their calculations led them to the following conjecture.

Conjecture 20.1. For each elliptic curve E over Q, there exists a constant C such that

lim
P→∞

f(P ) = C log(P )r

where r = rank(E(Q)).

We write the conjecture more succinctly as

f(P ) ∼ C log(P )r as P → ∞.
Note the remarkable nature of this conjecture: it predicts that one can determine the rank
of E(Q) from the sequence of numbers Np. Moreover, together with an estimate for the error
term, it will provide an algorithm for finding r.

Birch and Swinnerton-Dyer were, in practice, able to predict r from this conjecture with
fairly consistent success, but they found that f(P ) oscillates vigorously as P increases, and
that there seemed to be little hope of finding C with an error of less than say 10%. Instead,
they re-expressed their conjecture in terms of the zeta function of E.
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The zeta function of a variety over Q. Let V be a nonsingular projective variety over
Q. Such a variety is the zero set of a collection of homogeneous polynomials

F (X0, . . . , Xn) ∈ Q[X0, . . . , Xn].

Scale each such polynomial so that its coefficients lie in Z but have no common factor, and
let F̄ (X0, . . . , Xn) ∈ Fp[X0, . . . , Xn] be the reduction of the scaled polynomial modulo p. If
the polynomials F̄ define a nonsingular variety Vp over Fp, then we say V has good reduction
at p, or that p is good for V . All but finitely many primes will be good for a given variety.

For each good prime p we have a zeta function

ζ(Vp, s) = Z(Vp, p
−s), logZ(Vp, T ) =

∑
#Vp(Fpm)

Tm

m
,

and we define

ζ(V, s) =
∏
p

ζ(Vp, s).

Because the Riemann hypothesis holds for Vp, the product converges for -(s) > d + 1,
d = dimV (cf. the explanation below for the L-series of an elliptic curve).

Let Pt be the point over Q, i.e., Pt = A0 = P0. For this variety, all primes are good, and

logZ(Ptp, T ) =
∑

1
Tm

m
= log

1

1− T .

Therefore

ζ(Pt, s) =
∏
p

1

1− p−s

which is just the Riemann zeta function—already an interesting function.

Let V = Pn. Again all primes are good, and

#Pn(Fq) =
qn+1 − 1

q − 1
= 1 + q + · · ·+ qn, q = pm,

from which it follows that

ζ(Pn, s) = ζ(s)ζ(s− 1) · · · ζ(s− n)
with ζ(s) the Riemann zeta function.

Conjecture 20.2 (Hasse-Weil). For any nonsingular projective variety V over Q, ζ(V, s)
can be analytically continued to a meromorphic function on the whole complex plane, and
satisfies a functional equation relating ζ(V, s) with ζ(V, d+1−s), d = dimV (and, of course,
it is expected to satisfy a Riemann hypothesis, but let’s not concern ourselves with that).

The conjecture is widely believed to be true, but it is known in only a few cases (and the
parenthetical statement is not known for any variety, not even a point). Note that the above
calculations prove it for V = Pn.



102 J.S. MILNE

The zeta function of an elliptic curve over Q. Let E be an elliptic curve over Q, and
let S be the set of primes where E has bad reduction. According to the above definition

ζ(E, s) =
∏
p/∈S

1 + (Np − p− 1)p−s + p1−2s

(1− p−s)(1− p1−s)

=
ζS(s)ζS(s− 1)

LS(s)

where ζS(s) is Riemann’s zeta function except that the factors corresponding to the primes
in S have been omitted, and

LS(E, s) =
∏
p/∈S

1

1 + (Np − p− 1)p−s + p1−2s
.

Write

1 + (Np − p− 1)T + pT 2 = (1− αpT )(1− βpT ),
so that

LS(E, s) =
∏
p

1

1− αpp−s
1

1− βpp−s .

As we noted on p 92, the product
∏
p

1
1−p−s converges for -(s) > 1, and so

∏
p

1

1− p1
2p−s

converges for -(s) > 3
2
. Because |αp| = p1

2 = |βp|, a similar estimate shows that LS(E, s)

converges for -(s) > 3
2
.

We want to add factors to LS(E, s) for the bad primes. Define

Lp(T ) =


1− apT + pT 2, ap = p+ 1−Np, p good
1− T, if E has split multiplicative reduction
1 + T, if E has non-split multiplicative reduction
1, if E has additive reduction.

In the four cases

Lp(p
−1) =

Np

p
,
p− 1

p
,
p+ 1

p
,
p

p
.

Thus in each case, Lp(p
−1) = #Ens(Fp)

p
, where Ens is the nonsingular part of the reduction of

the elliptic curve modulo p (see the table on p29). Define

L(E, s) =
∏
p

1

Lp(p−s)
,

where the product is now over all prime numbers. The conductor NE/Q of E is defined to be∏
p bad p

fp where

fp =

{
fp = 1 if E has multiplicative reduction at p
fp ≥ 2 if E has additive reduction at p, and equals 2 if p �= 2, 3.

A formula of Ogg (proved by painful, case by case, checking) states that

fp = ordp(∆) + 1−mp
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where mp is the number of irreducible components on the Néron model (not counting mul-
tiplicities) and ∆ is the discriminant of the minimum equation of E

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

See Section 22 below.

Define Λ(E, s) = N
s/2
E/Q(2π)

−sΓ(s)L(E, s). The following is a more precise version of the
Hasse-Weil conjecture for the case of an elliptic curve.

Conjecture 20.3. The function Λ(E, s) can be analytically continued to a meromorphic
function on the whole of C, and it satisfies a functional equation

Λ(E, s) = wΛ(E, 2− s), w = ±1.

There is even a recipe for what w should be.

For curves with complex multiplication, i.e., such that End(E) �= Z, the conjecture was
proved by Deuring 1951/55. This case occurs for exactly 9 values of the j-invariant. The
key point is that there is always a “formula” for Np similar to that proved by Gauss for the
curve X3 + Y 3 + Z3 = 0 (see p101) which allows one to identify the L-series of E with an
L-series previously defined by Hecke and for which one knows analytic continuation and a
functional equation.

A much more important result, which we’ll spend most of the rest of the term discussing,
is the following. Let

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 mod N

}
.

Then Γ0(N) acts on the complex upper half-plane, and the quotient Γ0(N)\H has the struc-
ture of a Riemann surface. An elliptic curve E over Q is said to be modular if there is a
nonconstant map of Riemann surfaces

Γ0(N)\H → E(C)

for some N . Eichler and Shimura (in the fifties and sixties) proved a slightly weaker form of
Conjecture 20.3 for modular elliptic curves.

Recall that a curve is said to have semistable reduction at p if it has good reduction at p
or multiplicative reduction at p, i.e., if the reduced curve doesn’t have a cusp.

Wiles (with the help of Richard Taylor) proved that an elliptic curve with semistable
reduction at all p is modular, and Diamond extended Wiles’s results to elliptic curves having
semistable reduction at 3 and 5.

Remark 20.4. (a) Deuring’s result is valid for elliptic curves with complex multiplication
over any number field. The results of Eichler, Shimura, Wiles, et al. are valid only for elliptic
curves over Q. Even today, little is known about the L-series of elliptic curves over number
fields other than Q.

(b) Both results prove much more than the simple statement of Conjecture 20.3—they
succeed in identifying the function Λ(E, s).
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Statement of the Conjecture of Birch and Swinnerton-Dyer. Let E be an elliptic
curve over Q. Let

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

be a minimum equation for E over Q (see Section 22 below), and let

ω =
dx

2y + a1x+ a3
.

Recall that there is a canonical pairing

<,>: E(Q)× E(Q) → R, < P,Q >= ĥ(P +Q)− ĥ(P ) − ĥ(Q).
We define the discriminant of <,> to be the determinant of the r × r matrix whose i, jth
entry is < Pi, Pj > where P1, . . . , Pr is a basis for E(Q) modulo torsion:

disc <,>= det(< Pi, Pj >).

It is independent of the choice of the basis {Pi}.
Conjecture 20.5 (Birch and Swinnerton-Dyer). For any elliptic curve E over Q,

L(E, s) ∼
Ω ∏

p bad

cp

 [TS(E/Q)] disc <,>

[E(Q)tors]2
(s− 1)r as s→ 1,

where

[∗] = order of ∗ (elsewhere written #∗);
Ω =

∫
E(R) |ω|;

cp = (E(Qp) : E
0(Qp)).

Remark 20.6. (a) As we discuss in Section 22, for a modular elliptic curve, all terms in
the conjecture are computable except for the Tate-Shafarevich group, and, in fact, can be
computed by Pari.

(b) Formally, Lp(1) =
∏ p

Np
, and so the conjecture has an air of compatibility with Con-

jecture 20.1. I don’t know what (if any) is the precise mathematical relation between the
two conjectures.

(c) Let P1, . . . , Pr be linearly independent elements of E(Q). Then

det(< Pi, Pj >)

(E(Q) :
∑

ZPi)2

is independent of the choice of P1, . . . , Pr , and equals

disc <,>

[E(Q)tors]2

when they form a basis.

(d) The integral
∫
E(Qp)

|ω| makes sense, and, in fact equals (E(Qp) : E1(Qp))/p. The

explanation for the formula is that (see 7.3) there is a bijection E1(Qp) ↔ pZp under which
ω corresponds to the Haar measure on Zp for which Zp has measure 1 and (therefore) pZp

has measure 1/(Zp : pZp) = 1/p. Hence,∫
E(Qp)

|ω| = (E(Qp) : E
1(Qp))

∫
E1(Qp)

= |ω| = (E(Qp) : E
1(Qp))

p
=
cpNp

p
.
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For any finite set S of prime numbers including all those for which E has bad reduction,
define

L∗
S(s) =

 ∏
p∈S∪{∞}

∫
E(Qp)

|ω|
−1 ∏

p/∈S

1

Lp(p−s)
.

In this, Qp = R when p = ∞. When p is good,

Lp(p
−1) =

Np

p
=

(∫
E(Qp)

|ω|
)
,

and so the behaviour of LS(s) near s is independent
23 of S satisfying the condition, and the

conjecture of Birch and Swinnerton-Dyer can be stated as:

L∗
S(E, s) ∼

[TS(E/Q)] disc <,>

[E(Q)tors]2
(s− 1)r as s→ 1.

This is how Birch and Swinnerton-Dyer stated their conjecture.

What’s known about the conjecture of B-S/D. Birch and Swinnerton-Dyer, Stephens,
and many others, have computed all the terms in the conjecture except TS for several
thousand curves. The predicted value of [TS] turns out to be a square, and, when computed,
the 2 and 3 primary components have the correct order.

Cassels proved that [TS] is a square if finite. Thus, if [TSp] has order not equal to a square
for some p, then TS is infinite.

Let E and E ′ be two elliptic curves over Q, and suppose there is an isogeny E → E ′. Most
of the terms in Conjecture 20.5 differ for the two curves, but nevertheless Cassels was able
to show that if the conjecture if true for one curve, then it is true for the other, i.e., that the
conjecture is compatible with isogenies.

These results of Cassels were interesting applications of Galois cohomology.

For certain elliptic curves over function fields, the conjecture was proved in 1967 (see the
next section).

Thus, by the mid-seventies, the little progress had been made toward proving the conjec-
ture over Q. The Tate-Shafarevich group was not known to be finite for a single curve. In
1974, Tate said:

This remarkable conjecture relates the behaviour of a function L at a point
where it is not at present known to be defined to the order of a group TS which
is not known to be finite.

Coates and Wiles (1977): If E has complex multiplication, and E(Q) is infinite, then
L(E, 1) = 0.

Birch: For a modular elliptic curve E/Q and a complex quadratic extension K of Q, he
defined a “Heegner point” PK ∈ E(K), and suggested that it should often be of infinite
order.

Gross-Zagier (1983): Proved the formula

ĥ(PK) = (nonzero)L′(E/K, 1).

Thus PK has infinite order if and only if L′(E/K, 1) �= 0.

23More precisely, lims→1LS(s)/LS′ (s) = 1 for any two such sets S, S′.
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Let K = Q[
√
D], D < 0, be a complex quadratic extension of Q. If E is the curve

E : Y 2Z = X3 + aXZ2 + bZ3,

define EK to be the curve

EK : DY 2Z = X3 + aXZ2 + bZ3

—thus EK becomes isomorphic to E over K. There is an elementary formula:

L(E/K, s) = L(E/Q, s) · L(EK , s).

Bump-Friedberg-Hoffstein (1989): Showed that, given a modular elliptic curve E over Q,
there exists a complex quadratic field K such that L′(EK , 1) �= 0 (and hence the formula of
Gross and Zagier proves that PK has infinite order if L(E/Q, 1) �= 0).

Kolyvagin (1988): For a modular elliptic curve E/Q, if PK has infinite order for some
complex quadratic extension K of Q, then E(Q) and TS(E/Q) are both finite.

On combining these results, we find that L(E/Q, 1) �= 0 =⇒ E(Q) and TS(E/Q) are
finite.

In fact, Kolyvagin proves much more. For example, he shows that [TS(E/Q)] divides its
conjectured order. To complete the proof of the conjecture of Birch and Swinnerton-Dyer, it
suffices to check the its p-primary component has the correct order for a finite set of primes.

Roughly speaking, this is what was known by 1990.

21. Elliptic Curves and Sphere Packings

The conjecture of Birch and Swinnerton-Dyer is expected to hold, not just for elliptic
curves over Q, but also for elliptic curves over number fields and over certain function fields.
In the second case, the full conjecture has been proved in some important cases, and Elkies
and Shioda have shown that it can be used to recover (at least in dimensions ≤ 1000) most
of the known lattices that give very dense sphere packings, and in certain dimensions, for
example, 33, 54, 64, 80,..., to discover new denser sphere packings.

Let q be a power of the prime p, and let Fq(T ) be the field of fractions of Fq [T ]. The
height of a point P of P1(Fq(T )) can be defined as for a point of P1(Q): represent the point
as (f(T ) : g(T )) where f and g have been chosen to lie in Fq [T ] and be relatively prime, and
define

H(P ) = max(Fq [T ] : (f)), (Fq [T ] : (g)) = max qdeg f , qdegg.

The logarithmic height is

h(P ) = log q ·max{deg f, deg g}
If p �= 2, 3, an elliptic curve E over Fq(T ) can be written

Y 2Z = X3 + a(T )X2Z + b(T )Z3, a, b ∈ Fq[T ], ∆(T ) = 4a3 + 27b2 �= 0.

For each monic irreducible polynomial p(T ) in Fq [T ], we have a homomorphism a �→ ā :
Fq[T ] → Fq [T ]/(p(T )), and so we obtain a curve

Ē : Y 2Z = X3 + āX2Z + b̄Z3, ā, b̄ ∈ Fq [T ]/(p(T )),

over the field Fq[T ]/(p(T )). All the terms that go into the conjecture of Birch and Swinnerton-
Dyer in the number field case can be defined here.
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More generally, let K be a finite extension of Fq(T ). There will exist a nonsingular
projective curve C such that Fq(T ) = Fq(C). As we discussed on p102,

Z(C, T ) =

∏2g
i=1(1− ωiT )

(1− T )(1− qT ), |ωi| = q 1
2 , g = genus(C).

Now consider a constant elliptic curve E over K, i.e., a curve defined by an equation

E : Y 2Z = X3 + aXZ2 + bZ3

with the a, b ∈ Fq ⊂ K. Let

Z(E, T ) =
(1− α1T )(1− α2T )
(1− T )(1− qT ) ,

|α1| = q 1
2 = |α2|.

Proposition 21.1. For a constant elliptic curve E over K = Fq(C) (as above), the conjec-
ture of Birch and Swinnerton-Dyer is equivalent to the following statements:

(a) the rank of E(K) is equal to the number of pairs (i, j) such that αi = ωj;
(b) [TS(E/K)] disc <,>= qg

∏
αi 	=ωj

(1− ωj

αi
).

Proof. Elementary, but omitted.

Theorem 21.2. In the situation of the proposition, the conjecture of Birch and Swinnerton-
Dyer is true.

Proof. Tate (1966) proved statement (a) of the Proposition, and I proved statement (b) in
my thesis (1967).

In fact, the conjecture of Birch and Swinnerton-Dyer is true under the weaker hypothesis
that j(E) ∈ Fq (Milne 1975), for example, for all curves of the form

Y 2Z = X3 + bZ3, b ∈ K.
Sphere packings. 24 As we noted in (16.6) pairs consisting of a free Z-module of finite rank
L and a positive definite quadratic form q on V =df L⊗R are of great interest. By Sylvester’s
theorem, we can choose a basis for V that identifies (V, q) with (Rn, X2

1 + · · · +X2
n). The

bilinear form associated with q is

<x, y>= q(x+ y)− q(x)− q(y).
Given such a pair (L, q), the numbers one needs to compute are

(a) the rank r of L;
(b) the square of the length of the shortest vector

m(L) = inf
v∈L,v 	=0

<v, v>;

(c) the discriminant of L,
discL = det(<ei, ej>)

where e1, . . . , er is a basis for L.

24The best reference for this is Oesteré’s Bourbaki talk (Astérisque, 189/190, 1990). There are some
uncorrected misprints in the next two pages.
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The discriminant is independent of the choice of a basis for L. Let

γ(L) = m(L)/disc(L)
1
r .

The volume a fundamental parallelopiped for L is
√
discL. The sphere packing associated

with L is formed of spheres of radius 1
2

√
m(L), and therefore its density is

d(L) = 2−rbrγ(L)
r
2

where br = π
r/2/Γ( r+2

2
) is the volume of the r-dimensional unit ball. To maximize d(L), we

need to maximise γ(L).

Let E be a constant elliptic curve over a field Fq(C) as above, and let L = E(Q)/E(Q)tors
with the quadratic form q = 2ĥ. If we know the ωi and αj, part (a) of Theorem 21.2 gives
r, and part (b) gives an upper bound for discL:

disc <,>= qg
∏

αi 	=ωj

(1− ωj
αi
)/[TS] ≤ qg ∏

αi 	=ωj

(1− ωj
αi
).

Finally, an easy, but nonelementary argument, shows that

m(L) ≥ 2[C(k)]/[E(k)]

for all finite k ⊃ Fq (and [∗] = Card(∗)). The point is that an element P of E(K) defines

a map u : C → E, and ĥ(P ) is related to the degree of u. Thus, we get a lower bound for
m(L) in terms of the ωi and αj.

Example. Consider the curve

C : Xq+1 + Y q+1 + Zq+1 = 0

over Fq2 (note, not over Fq).

Lemma 21.3.

(a) The curve C is nonsingular, of genus g = q(q−1)
2
.

(b) #C(Fq2) = q
3 + 1.

(c) Z(C, T ) = (1+qT )q(q−1)

(1−T )(1−q2T ).

Proof. (a) The partial derivatives of the defining equation are Xq , Y q, Zq, and these have
no common zero in P2. Therefore, the curve is nonsingular, and so the formula on p9 shows
that it has genus q(q − 1)/2.

(b) The group F×
q2 is cyclic of order q2 − 1 = (q + 1)(q − 1), and F×

q is its subgroup of

order q − 1. Therefore, as x runs through Fq2 , x
q+1 takes the value 0 once, and each value

in F×
q q + 1 times. A similar remark applies to yq+1 and zq+1. We can scale each solution of

Xq+1 + Y q+1 + Zq+1 = 0 so that x = 0 or 1.

Case 1: x = 1, 1 + yq+1 �= 0. There are q2 − q − 1 possibilities for y, and then q + 1
possibilities for z. Hence (q2 − q − 1)(q + 1) = q3 − 2q − 1 solutions.

Case 2: x = 1, 1 + yq+1 = 0. There are q + 1 possiblities for y and one for z. Hence q + 1
solutions.

Case 3: x = 0. We can take y = 1, and then there are q + 1 possibilities for z.

In sum, there are q3 + 1 solutions.



ELLIPTIC CURVES 109

(c) We know that

#C(Fq) = 1 + q2 −
2g∑
i=1

ωi.

Therefore
∑2g
i=1 ωi = q

2 − q3 = −2gq. Because |ωi| = q, this forces ωi = −q.
For all q, it is known that there is an elliptic curve E over Fq2 , such that E(Fq2) has

q2 + 2q + 1 elements (the maximum allowed by the Riemann hypothesis). For such a curve

Z(E, T ) =
(1 + qT )2

(1− T )(1− q2T ) .

Proposition 21.4. Let L = E(K)/E(K)tors with E and K = Fq(C) as above. Then:

(a) The rank r of L is 2q(q − 1);
(b) m(L) ≥ 2(q − 1);
(c) [TS(E/K)] disc(L) = qq(q−1);
(d) γ(L) ≥ 2(q − 1)/

√
q.

Proof. (a) Since all αi and ωj equal −q, if follows from (21.2a) that the rank is 2 × 2g =
2q(q − 1).

(b) We have

m(L) ≥ [C(Fq2)]

[E(Fq2)]
=

q3 + 1

(q2 + 1)2
> q − 2.

(c) This is a special case of (21.2), taking count that our field is Fq2 (not Fq) and g =
q(q − 1)/2.

(d) Follows immediately from the preceding.

Remark 21.5. (a) Gross and Dummigan have obtained information on the Tate-Shafarevich
group in the above, and a closely related, situation. For example, TS(E/K) is zero if q = p

or p2, and has cardinality at least pp
3(p−1)3/2 if q = p3.

(b) For q = 2, L is isomorphic to the lattice denoted D4, for q = 3, to the Coxeter-Todd
lattice K12, and for q = 3 it is similar to the Leech lattice.

The best description of the work of Elkies and Shioda on the application of elliptic curves
to sphere packings is Oesterlé’s Séminaire Bourbaki talk, 1989/90, no. 727 (published in
Asterisque).

Exercise 21.6. Consider E : Y 2Z + Y Z2 = X3.

(a) Show that E is a nonsingular curve over F2.

(b) Compute #E(F4), F4 being the field with 4 elements.

(c) Let K be the field of fractions of the integral domain F4[X, Y ]/(X
5 + Y 5+ 1), and let

L = E(K)/E(K)tors considered as a lattice in V = L⊗ R endowed with the height pairing.
Compute the rank of L, m(L), and γ(L).

[[This exercise is becomes more interesting when X5+Y 5+1 is replaced by X3+Y 3+1.]]

Solution to Exercise 16.10. There are detailed solutions in Knapp, p110–114. Consider
the curve Y 2 = X3 − 4X, and take α = −2, β = 0, γ = 2. Suppose P is a point of infinite
order on E—we may assume P /∈ 2E(Q). The images of the 2-torsion points (−2, 0), (0, 0),
(2, 0) under ϕ2 are (1, 1), (1, 0), and (0, 1). Since these fill out all possible nonzero values
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of ϕ2, after possibly replacing a point P of infinite order by P + Q, 2Q = 0, ϕ2(P ) will be
(0, 0). If ϕ∞(P ) �= 0 (i.e., ϕ∞(P ) �= (+,+)) then ϕ∞(P ) = (+,−), which means that

x+ 2 = �, x = −�, x− 2 = −�
where P = (x : y : 1) and � denotes a square. Subtracting the first two equations gives
2 = � + �. If these squares have even denominators, one finds that

0 ≡ � + � mod 8

with both squares odd integers, which is impossible. Thus the squares x+2 and x have odd
denominators. Hence

2 = x− (x− 2) = −� + �
where the first square (hence also the second) has odd denominator. On clearing denomina-
tors, one finds that

2m2 ≡ −� + � mod 8

with m odd and all terms integers. This is impossible. Hence ϕ∞(P ) = 0, and so P ∈
2E(Q)—contradiction.

22. Algorithms for Elliptic Curves

The general Weierstrass equation of an elliptic curve E over a field k is

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

One attaches to the curve the following quantities:

b2 = a21 + 4a2 c4 = b22 − 24b4
b4 = a1a3 + 2a4 c6 = −b32 + 36b2b4 − 216b6
b6 = a23 + 4a6 [Silverman (1st printing) p46
b8 = b2a6 − a1a3a4 + a2a23 − a24 has c6 = +b32 + · · · ]
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 j = c34/∆.

The curve is nonsingular if and only if ∆ �= 0. The differential ω = dx
2y+a1x+a3

is invariant

under translation. A Weierstrass equation for an elliptic curve E is unique up to a coordinate
transformation of the form

x = u2x′ + r y = u3y′ + su2x′ + t , u, r, s, t ∈ k, u �= 0.

The quantities ∆, j, ω transform according to the rules:

u12∆′ = ∆, j′ = j, ω′ = uω.

Two curves become isomorphic over the algebraic closure of k if and only if they have the
same j-invariant. When k has characteristic �= 2, 3, the terms involving a1, a3, a2 can be
eliminated from the Weierstrass equation, and the above equations become those of (5.3).

A minimum Weierstrass equation for an elliptic curve E over Q is an equation of the above
form with the ai ∈ Z and ∆ minimal. It is unique up to a coordinate transformation of the
above form with r, s, t, u ∈ Z and u ∈ Z× = {±1}.
There is an algorithm (due to Tate) for computing the minimum Weierstrass equation,

discriminant, conductor, j-invariant, the fibres of its Néron model, etc. of an elliptic curve
over Q, which has been implemented in computer programs, for example, in the program
Pari, which is specifically designed for calculations in algebraic number theory (including
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elliptic curves). In the following, I explain how to use Pari as a supercalculator. You can
also program it, but for that you will have to read the manual.

To start Pari on the Suns, type:

gp (why, I don’t know).25

An elliptic curve is specified by giving a vector e=[a1,a2,a3,a4,a6]

smallinitell(e) Computes the 13-component vector

[a1, a2, a3, a4, a5, b1, b4, b6, b8, c4, c6,∆, j]

addell(e,z1,z2) Computes the sum of the points z1=[x1,y2] and z2=[x2,y2].

In the following operations, e is usually required to be the output of smallinitell.

globalred(e) Computes the vector [N,v] where N is the conductor of the curve and
v=[u,r,s,t] is the coordinate transformation giving the Weierstrass minimum model with
a1 = 0 or 1, a2 = 0, 1,−1, and a3 = 0, 1. Such a model is unique.

chell(e,v) Changes e to e′, where e′ is the 13-component vector corresponding to the
curve obtained by the change of coordinates v=[u,r,s,t].

Some of the remaining functions require the curve e to be in minimal Weierstrass form.

anell(e,k) Computes the first k of the an’s for the curve (the coefficients of n−s in the
Dirichlet series, e.g., for a good p, Np = p + 1− ap).
apell(e,p) Computes ap.

hell(e,z) Computes the Néron-Tate canonical height of the point z on e.

localred(e,p) Computes the type of the reduction at p using Kodaira’s notation ([S1,
p359]. It produces [f,n,...] where f is the exponent of p in the conductor of e, n = 1
means good reduction (type I0), n = 2, 3, 4 means reduction of type II,III,IV, n = 4 + ν
means type Iν, and −1, −2 etc. mean I∗ II∗ etc..
lseriesell(e,s,N,A) Computes the L-series of e at s. Here N is ± the conductor

depending on the sign of the functional equation (i.e., the w), and A is a cutoff point for the
integral, which must be close to 1 for best speed (see the reference below).

pointell(e,z) Computes the coordinates [x,y] where x = ℘(z) and y = ℘′(z) (I think).
powell(e,n,z) Computes n times the point z on e.

To quit, type \q (supporting my conjecture that no two programs written by Unixphiles
terminate with the same command).

EXAMPLE: gp

? e=[0,-4,0,0,16] Defines the elliptic curve Y 2 = X3 − 4X2 + 16 (see Exercise
19.12).

%1=[0,-4,0,0,16]

? smallinitell(e)

%2=[0,-4,0,0,16,-16,0,64,-256,256,-9728,-45056,-4096/11] For example,
∆ = −45056.
? globalred(%2)

%3=[11, [2,0,0,4],1] Computes the minimum conductor and the change of coordi-
nates required to give the minimal equation.

25Maybe Go Pari?
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? chell(%2,[2,0,0,4])

%4=[0,-1,1,0,0,-4,0,1,-1,16,-152,-11,-4096/11]

Computes the minimal Weierstrass equation for E, Y 2 + Y = X3 − X2, which now has
discriminant −11 but (of course) the same j-invariant.

? anell(%4,13)

%5=[1,-2,-1,2,1,2,-2,0,-2,-2,1,-2,4] In particular,

ap =df p + 1−Np = −1, 1,−2, 1, 4 for p = 3, 5, 7, 11, 13.

? localred(%4,2)

%6 = [0,1,...] So E now has good reduction at 2.

? localred(%4,11)

%6 = [1,5,...] So E has bad reduction at 11, with conductor 111 (hence the singularity
is a node), and the Kodaira type of the special fibre of the Néron model is I1.

Pari is available (free!) by anonymous ftp from math.ucla.edu—it runs on PC’s and Macs.
Henri Cohen, the main author of Pari, has also written the best book on computational
algebraic number theory “A Course in Computational Algebraic Number Theory”, which
explains most of the algorithms incorporated into Pari.

23. The Riemann Surfaces X0(N)

We wish to understand the L-series of an elliptic curveE overQ, i.e., we wish to understand
the sequence of numbers

N2, N3, N5, N7, . . . , Np, . . . Np = #E(Fp).

There is no direct way of doing this. Instead, we shall see how the study of modular curves
and modular forms leads to functions that are candidates for being the L-series of an elliptic
curve over Q, and then we shall see how Wiles showed that the L-series of (almost all) elliptic
curves over Q do arise from modular forms.

The notion of a Riemann surface. Let X be a connected Hausdorff topological space.
A coordinate neighbourhood for X is a pair (U, z) with U an open subset of X and z
a homeomorphism of U onto an open subset of the complex plane C. Two coordinate
neighbourhoods (U1, z1) and (U2, z2) are compatible if the function

z1 ◦ z−12 : z2(U1 ∩ U2) → z1(U1 ∩ U2)
is holomorphic with nowhere vanishing derivative. A family of coordinate neighbourhoods
(Ui, zi)i∈I is a coordinate covering if X = ∪Ui and (Ui, zi) is compatible with (Uj, zj) for all
pairs (i, j) ∈ I × I . Two coordinate coverings are said to be equivalent if the their union
is also a coordinate covering. This defines an equivalence relation on the set of coordinate
coverings, and we call an equivalence class a complex structure on X. A Hausdorff topological
space X together with a complex structure is a Riemann surface.

Let U = (Ui, zi) be a coordinate covering of X. A function f : U → C on an open subset
U of X is said to be holomorphic relative to U if f ◦ z−1i : zi(U ∩ Ui) → C is holomorphic
for all i ∈ I . If f is holomorphic relative to one coordinate covering, then it is holomorphic
relative to every equivalent covering, and so it will be said to be holomorphic for the complex
structure on X.
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Recall that a meromorphic function on an open subset U of C is a holomorphic function
f on U − Ξ for some discrete subset Ξ ⊂ U that has at worst a pole at each point of Ξ, i.e.,
such that for each a ∈ Ξ, there exists an m such that (z − a)mf(z) is holomorphic in some
neighbourhood of a. A meromorphic function on an open subset of a Riemann surface is
defined similarly.

A map f : X → X ′ from one Riemann surface to a second is holomorphic if g ◦ f is
holomorphic whenever g is a holomorphic function on an open subset of X ′. For this, it
suffices to check that for every point P in X, there are coordinate neighbourhoods (U, z) of
P and (U ′, z′) of f(P ) such that z′ ◦f ◦z−1 : z(U) → z′(U ′) is holomorphic. An isomorphism
of Riemann surfaces is a bijective holomorphic map whose inverse is also holomorphic.

Example 23.1. Any open subset of C is a Riemann surface with a single coordinate
neighbourhood—U itself with the identity function z.

Example 23.2. Let X be the unit sphere

S2 : X
2 + Y 2 + Z2 = 1

in R3, and let P be the north pole (0, 0, 1). Stereographic projection from P is a map

(x, y, z) �→ x+ iy

1− z : X − P → C.

Take this to be a coordinate neighbourhood for X. Stereographic projection from the south
pole S gives a second coordinate neighbourhood. These two coordinate neighbourhoods
define a complex structure on X, and X together with the complex structure is called the
Riemann sphere.

Example 23.3. Let X = R2/Z2. For any τ ∈ H, the homeomorphism

(x, y) �→ xτ + y : R2/Z2 → C/Zτ + Z

defines a complex structure on X. The Riemann surfaces corresponding to τ and τ ′ are
isomorphic if and only j(τ ) = j(τ ′) (see Section 10). In particular, this shows that there are
uncountably many nonisomorphic complex structures on the topological space X.

Quotients of Riemann surfaces by group actions. We shall need to define Riemann
surfaces as the quotients of other (simpler) Riemann surfaces by group actions. This can be
quite complicated. The following examples will help.

Example 23.4. Let n ∈ Z act on C by z �→ z + n. Topologically C/Z is a cylinder. We
can give it a complex structure as follows: let π : C → C/Z be the quotient map; for any
P ∈ C/Z and Q ∈ f−1(P ) we can find open neighbourhoods U of P and V of Q such that
π : U → V is a homeomorphism; take any such pair (U, π−1 : U → V ) to be a coordinate
function.

For any open U ⊂ C/Z, a function f : U → C is holomorphic for this complex structure
if and only if f ◦ π is holomorphic. Thus the holomorphic functions f on U ⊂ C/Z can
be identified with the holomorphic functions g on π−1(U) invariant under Z, i.e., such that
g(z + 1) = g(z).

For example, q(z) = e2πiz defines a holomorphic function on C/Z. In fact, it gives an
isomorphism C/Z → C× whose in inverse C× → C/Z is (by definition) (2πi)−1 · log.
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Example 23.5. Let D be the open unit disk {z | |z| < 1}, and let ∆ be a finite group acting
on D. The Schwarz lemma implies that Aut(D) = {z ∈ C | |z| = 1} ≈ R/Z, and it follows
that ∆ is a finite cyclic group. Let z �→ ζz be its generator and suppose that ζ has order m,
i.e., ζm = 1. Then zm is invariant under ∆, and so defines a function on ∆\D, which in fact
is a homeomorphism ∆\D→ D, and therefore defines a complex structure on ∆\D.
Let π : D→ ∆\D be the quotient map. Then f �→ f ◦π identifies the space of holomorphic

functions on U ⊂ ∆\D with the space of holomorphic functions on π−1(U) such that f(ζz) =
f(z), i.e., which are of the form f(z) = h(zm) with h holomorphic. Note that if π(Q) = P ,
then ordP (f) =

1
m
ordQ(f ◦ π).

Let Γ be a group acting on a Riemann surface X. A fundamental domain for Γ is a
connected open subset D of X such that

(a) no two points of D lie in the same orbit of Γ;
(b) the closure D̄ of D contains at least one element from each orbit.

For example,
D = {z ∈ C | 0 < -(z) < 1}

is a fundamental domain for Z acting on C (as in 23.4), and

D0 = {z ∈ D | 0 < arg z < π/n}
is a fundamental domain for Z/nZ acting on the unit disk (as in 23.5).

The Riemann surfaces X(Γ). Let Γ be a subgroup of finite index in SL2(Z). We want
to define the structure of a Riemann surface on the quotient Γ\H. This we can do, but the
resulting surface will not be compact. Instead, we need to form a quotient Γ\H∗ where H∗

properly contains H.

The action of SL2(Z) on the upper half plane. Recall that SL2(Z) acts on H = {z | $(z) > 0}
according to (

a b
c d

)
z =

az + b

cz + d
.

Note that −I =
( −1 0

0 −1
)
acts trivially on H, and so the action factors through

PSL2(Z) = SL2(Z)/{±I}.
Let

S =

(
0 −1
1 0

)
, so Sz =

−1
z
,

and

T =

(
1 1
0 1

)
, so Tz = z + 1.

Then
S2 = 1, (ST )3 = 1 in PSL2(Z).

Proposition 23.6. Let

D =
{
z ∈ H | |z| > 1, −1

2
< -(z) < 1

2

}
.
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(a) D is a fundamental domain for SL2(Z); moreover, two elements z and z
′ of D̄ are in

the same orbit if and only if
(i) -(z) = ±1

2
and z′ = z ± 1 (so z′ = Tz or z = Tz′);

(ii) |z| = 1 and z′ = −1/z (= Sz).
(b) For z ∈ D̄, the stabilizer of z is �= {±I} if and only if z = i, in which case the

stabilizer is <S>, or ρ = e2πi/6, in which case the stabilizer is <TS>, or ρ2, in which
case it is <ST>.

(c) The group PSL2(Z) is generated by S and T .

Proof. Let Γ′ =<S, T >. One first shows that Γ′D̄ = H, from which (a) and (b) follow
easily. For (c), let γ ∈ SL2(Z), and choose a point z0 in D. There exists a γ

′ in Γ′ such that
γz0 = γ

′z0, and it follows from (b) that γ′γ−1 = ±I . For the details, see (Serre, Course on
Arithmetic, VII.1.2).

Remark 23.7. Let Γ be a subgroup of finite index in SL2(Z), and write

SL2(Z) = Γγ1 ∪ . . . ∪ Γγm (disjoint union).

Then D′ = ∪γiD satisfies the conditions to be a fundamental domain for Γ, except that it
won’t be connected. However, it is possible to choose the γi so that the closure of D′ is
connected, in which case the interior of the closure will be a fundamental domain. for Γ.

The extended upper half plane. The elements of SL2(Z) act on P1(C) by projective linear
transformations, (

a b
c d

)
(z1 : z2) = (az1 + bz2 : cz1 + dz2).

Identify H, Q, and {∞} with subsets of P1(C) according to

z ↔ (z : 1) z ∈ H
r ↔ (r : 1) r ∈ Q

∞ ↔ (1 : 0)
.

The action of SL2(Z) stabilizes H∗ =df H ∪ Q ∪ {∞}. For example, for z ∈ H,(
a b
c d

)
(z : 1) = (az + b : cz + d) = (

az + b

cz + d
: 1)

as usual, and for r ∈ Q,(
a b
c d

)
(r : 1) = (ar + b : cr + d) =

{
(ar+b
cr+d

: 1) r �= −d
c

∞ r = −d
c

,

and, finally, (
a b
c d

)
∞ = (a : c) =

{
(a
c
: 1) c �= 0,

∞ c = 0
.

Thus in passing from H to H∗, we have added one additional SL2(Z) orbit. The points in
H∗ not in H are often called the cusps.

We make H∗ into a topological space as follows: the topology on H is that inherited from
C; the sets

{z | $(z) > M}, M > 0
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form a fundamental system of neighbourhoods of ∞; the sets

{z | |z − (a + ir)| < r} ∪ {a}
form a fundamental system of neighbourhoods of a ∈ Q. One shows that H∗ is Hausdorff,
and that the action of SL2(Z) is continuous.

The topology on Γ\H∗. Recall that if π : X → Y is a surjective map and X is a topological
space, then the quotient topology on Y is that for which a set U is open if and only of
π−1(U) is open. In general the quotient of a Hausdorff space by a group action will not be
Hausdorff, even if the orbits are closed—one needs that distinct orbits have disjoint open
neighbourhoods.

Let Γ be a subgroup of finite index in SL2(Z). One can show that such a Γ acts properly
discontinuously on H, i.e., that for any pair of points x, y ∈ H, there exist neighbourhoods
U of x and V of y such that

{γ ∈ Γ | γU ∩ V �= ∅}
is finite. In particular, this implies that the stabilizer of any point in H is finite (which we
knew anyway).

Proposition 23.8. (a) For any compact sets A and B of H, {γ ∈ Γ | γA ∩ B �= ∅} is
finite.

(b) Any z ∈ H has a neighbourhood U such that

γU ∩ U �= ∅
only if γz = z.

(c) For any points x, y of H not in the same Γ-orbit, there exist neighbourhoods U of x
and V of y such that γU ∩ V = ∅ for all γ ∈ Γ

Proof. (a) This follows easily from the fact that Γ acts properly discontinuously.

(b) Let V be compact neighbourhood of z. From (a) we know that there is only a finite
set {γ1, . . . , γn} of Γ such that V ∩ γiV �= ∅. Let γ1, . . . , γs be the γi’s fixing z, and for each
i > s, choose disjoint neighbourhoods Vi of z and Wi of γiz, and set

U = V ∩ (∩i>sVi ∩ γ−1i Wi).

For i > s, γiU ⊂ Wi, which is disjoint from Vi, which contains U .

(c) Choose compact neighbourhoods A of x and B of y, and let γ1, . . . , γn be the elements
of Γ such that γiA ∩ B �= ∅. We know γix �= y, and so we can find disjoint neighbourhoods
Ui and Vi of γix and y. Take

U = A ∩ γ−11 U1 ∩ . . . ∩ γ−1n Un, V = B ∩ V1 ∩ . . . ∩ Vn.

Corollary 23.9. The space Γ\H is Hausdorff.

Proof. Let x and y be points of H not in the same Γ-orbit, and choose neighbourhoods U and
V of x and y as in (c) of the last proposition. Then ΓU and ΓV are disjoint neighbourhoods
of Γx and Γy.

In fact, Γ\H∗ will be Hausdorff, and compact.
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The complex structure on Γ0(N)\H∗. The subgroups of SL2(Z) that we shall be espe-
cially interested in are

Γ0(N) =

{(
a b
c d

)∣∣∣∣∣ c ≡ 0 mod N

}
.

We let Γ0(1) = SL2(Z).

For z0 ∈ H, choose a neighbourhood V of z0 such that

γV ∩ V �= ∅ =⇒ γz0 = z0,

and let U = π(V )—it is open because π−1U = ∪γV is open.

If the stabilizer of z0 in Γ0(N) is ±I , then π : V → U is a homeomorphism, with inverse
ϕ say, and we require (U, ϕ) to be a coordinate neighbourhood.

If the stabilizer of z0 in Γ0(N) is �= {±I}, then it is a cyclic group of order 2m with m = 2
or 3 (and its stabilizer in Γ0(N)/{±I} has order 2 or 3)—see (23.6b). The fractional linear
transformation

λ : H → D, z �→ z − z0
z − z̄0 ,

carries z0 to 0 in the unit disk D. There is a well-defined map ϕ : U → C such that
ϕ(π(z)) = λ(z)n, and we require (U, ϕ) to be a coordinate neighbourhood (cf. Example
23.5).

Next consider z0 = ∞. Choose V to be the neighbourhood {z | $(z) > 2} of ∞, and let
U = π(V ). If

z ∈ V ∩ γV, γ =

(
a b
c d

)
∈ Γ0(N),

then

2 ≤ $(γz) = $(z)
|cz + d|2 ≤ 1

|c|2$(z) ≤ 1

2|c|2
and so c = 0. Therefore

γ = ±
(
1 m
0 1

)
,

and so there is a well-defined map ϕ : U → C such that ϕ(π(z)) = e2πiz, and we require
(U, ϕ) to be a coordinate neighbourhood (cf. Example 23.4).

For z0 ∈ Q, we choose a β ∈ SL2(Z) such that β(z0) = ∞, and proceed similarly.

Proposition 23.10. The coordinate neighbourhoods defined above are compatible, and there-
fore define on Γ0(N)\H∗ the structure of a Riemann surface.

Proof. Omitted.

Write X0(N) for the Riemann surface Γ0(N)\H∗, and Y0(N) for its open subsurface
Γ0(N)\H.
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The genus of X0(N). The genus of a Riemann surface can be computed by “triangulating”
it, and using the formula

2− 2g = V − E + F

where V is the number of vertices, E is the number of edges, and F is the number of faces.
This, presumably, is the original definition of the genus. For example, the sphere may be
triangulated by projecting out from a regular tetrahedron. Then V = 4, E = 6, and F = 4,
so that g = 0 as expected.

Proposition 23.11. The Riemann surface X0(1) has genus zero.

Proof. One gets a fake triangulation of the sphere by taking taking as vertices three points
on the equator, and the upper and lower hemispheres as the faces. This gives the correct
genus

2 = 3− 3 + 2

but it violates the usual definition of a triangulation, which requires that any two triangles
intersect in a single side, a single vertex, or not at all. It can be made into a valid triangulation
by adding the north pole as a vertex, and joining it to the three vertices on the equator.

One gets a fake triangulation of X0(1) by taking the three vertices ρ, i, and ∞ and the
obvious curves joining them (two on the boundary of D and one the nimaginary axis from
i to ∞). It can be turned into a valid triangulation by adding a fourth point not on any of
these curves, and joining it to ρ, i, and ∞.

For a finite mapping π : Y → X of compact Riemann surfaces, the Hurwitz genus formula
relates the two genuses:

2gY − 2 = (2gX − 2)m+
∑
Q∈Y

(eQ − 1).

Herem is the degree of the mapping, so that π−1(P ) has m elements except for finitely many
P , and eQ is the ramification index, so that eQ = 1 unless at least two sheets come together
at Q above π(Q) in which case it is the number of such sheets.

For example, if E is the elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ C, ∆ �= 0,

and π is the map

∞ �→ ∞, (x : y : z) �→ (x : z) : E(C) → P1(C)

then m = 2 and eQ = 1 except for Q = ∞ or one of the points of order 2 on E, in which
case eQ = 2. This is consistent with E(C) having genus 1 and P1(C) (the Riemann sphere)
having genus 0.

The Hurwitz genus formula can be proved without too much difficulty by triangulating Y
in such a way that the ramification points are vertices and such that the triangulation of Y
lies over a triangulation of X.

Now one can compute the genus of X0(N) by studying the quotient map X0(N) → X0(1).
The only (possible) ramification points are those Γ0(1)-equivalent to one of i, ρ, or ∞.
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Explicit formulas can be found in Shimura, Arithmetic Theory of Automorphic Functions,
pp23-25. For example, one finds that, for p a prime > 3,

genus(X0(p)) =


n − 1 if p = 12n + 1
n if p = 12n + 5, 12n + 7
n + 1 if p = 12n + 11.

Moreover,

g = 0 if N = 1, . . . , 10, 12, 13, 16, 18, 25;

g = 1 if N = 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49

g = 2 if N = 22, 23, 26, 28, 29, 31, 37, 50.

Exercise 23.12. (a) For a prime p, show that the natural action of Γ0(p) on P1(Q) has only
two orbits, represented by 0 and ∞ = (1 : 0). Deduce that X0(p) \ Y0(p) has exactly two
elements.

(b) Define ∆(z) = ∆(Zz+Z) (see p51), so that ∆ is a basis for the C-vector space of cusp
forms of weight 12 for Γ0(1). Define ∆11(z) = ∆(11z), and show that it is a cusp form of
weight 12 for Γ0(11). Deduce that ∆ ·∆11 is a cusp form of weight 24 for Γ0(11).

(c) Assume Jacobi’s formula:

∆(z) = (2π)12q
∞∏
n=1

(1− qn)24,

(q = e2πiz), and that S2(Γ0(11)) has dimension 1. Show that

F (z) = q
∞∏
n=1

(1− qn)2(1− q11n)2,

is a cusp form of weight 2 for Γ0(11). [Hint: Let f be a nonzero element of S2(Γ0(11)), and
let g = ∆ · ∆11. Show that f12/g is holomorphic on H∗ and invariant under Γ0(1), and is
therefore constant (because the only holomorphic functions on a compact Riemann surface
are the constant functions). The only real difficulty is in handling the cusp 0, since I have
more-or-less ignored cusps other than ∞.]

24. X0(N) as an Algebraic Curve over Q

In the last section, we defined compact Riemann surfaces X0(N). A general theorem states
that any compact Riemann surface X can be identified with the set of complex points of a
unique nonsingular projective algebraic curve26 C over C. However, in general C can’t be
defined over Q (or even Qal)—consider for example a Riemann surface C/Λ whose j-invariant
is transcendental—and when C can be defined over Q, in general, it can’t be defined in any
canonical way—consider an elliptic curve E over C with j(E) ∈ Q.

In this section, we’ll see that X0(N) has the remarkable property that it is the set of
complex points of a canonical curve over Q.

26The inconsistency between “surface” and “curve” is due to the analysts inability to count.



120 J.S. MILNE

Modular functions. For a connected compact Riemann surface X, the meromorphic func-
tions on X form a field of transcendence degree 1 over C.

For a subgroup Γ of finite index in SL2(Z), the meromorphic functions on Γ\H∗ are called
the modular functions for Γ. If π : H → Γ\H∗ is the quotient map, then g �→ π ◦ g identifies
the modular functions for Γ with the functions f on H such that

(a) f is meromorphic on H;
(b) for any γ ∈ Γ, f(γz) = f(z);
(c) f is meromorphic at the cusps (i.e., at the points of H∗ \ H).

The meromorphic functions on X0(1). Let S be the Riemann sphere S = C ∪ {∞}
(better, S = P1(C) = A1(C) ∪ {(1 : 0)}. The meromorphic functions on S are the rational
functions of z, and the automorphisms of S are the fractional-linear transformations,

z �→ az + b

cz + d
, a, b, c, d ∈ C, ad− bc �= 0.

In fact, Aut(S) = PGL2(C) =df GL2(C)/C
×. Moreover, given two sets {P1, P2, P3} and

{Q1, Q2, Q3} of distinct points on S, there is a unique fractional-linear transformation sending
each Pi to Qi. (The proof of the last statement is an easy exercise in linear algebra: given
two sets {L1, L2, L3} and {M1,M2,M3} of distinct lines through the origin in C2, there is a
linear transformation carrying each Li to Mi, and the linear transformation is unique up to
multiplication by a nonzero constant.)

We use ∞, i, and ρ to denote also the images of these points on X0(1).

Proposition 24.1. There exists a unique meromorphic function J on X0(1) that is holo-
morphic except at ∞, where it has a simple pole, and takes the values

J(i) = 1, J(ρ) = 0.

Moreover, the meromorphic functions on X0(1) are the rational functions of J .

Proof. We saw in the last section that X0(1) is isomorphic (as a Riemann surface) to the
Riemann sphere S. Let f : X0(1) → S be an isomorphism, and let P,Q,R be the images
of ρ, i,∞. There is a unique fractional-linear transformation L sending P,Q,R to 0, 1,∞,
and the composite L ◦ f has the required properties. If J ′ is a second such function, then
the composite J ′ ◦ J−1 is an automorphism of S fixing 0, 1,∞, and so is the identity map.
Under this isomorphism, the function z on S corresponds to the function J on X0(1).

In minor disagreement with the notation in Section 10, I write

G2k(Λ) =
∑

ω∈Λ,ω 	=0

1

ω2k
,

for a lattice Λ ⊂ C, and

G2k(z) = G2k(Zz + Z), g4(z) = 60G4(z), g6(z) = 140G6(z), z ∈ H.

Then (℘, ℘′) maps C/Zz + Z onto the elliptic curve

Y 2Z = 4X3 − g4(z)XZ2 − g6(z)Z3, ∆ = g4(z)
3 − 27g6(z)

2 �= 0,

whose j-invariant is

j(z) =
1728g4(z)

3

∆
.
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From their definitions, it is clear thatG2k(z), ∆(z), and j(z) are invariant under T : z �→ z+1,
and so can be expressed in terms of the variable q = e2πiz. In Serre, Cours d’Arithmétique,
VII, one can find the following expansions:

G2k(z) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn, σk(n) =
∑
d|n
dk,

∆ = (2π)12(q − 24q2 + 252q3 − 1472q4 + · · · ),
j =

1

q
+ 744 + 196884q + 21493760q2 +

∞∑
n=3

c(n)qn, c(n) ∈ Z.

The proof of the formula for G2k(z) is elementary, and the others follow from it together
with elementary results on ζ(2k). The factor 1728 was traditionally included in the formula
for j so that it has residue 1 at infinity.

The function j is invariant under SL2(Z), because j(z) depends only on the lattice Zz+Z.
Moreover:

j(ρ) = 0, because C/Zρ + Z has complex multiplication by ρ2 = 3
√
1, and

therefore is of the form Y 2 = X3 + b, which has j-invariant 0.
j(i) = 1728, because C/Zi+ Z has complex multiplication by i, and therefore
is of the form Y 2 = X3 + aX.

Consequently j = 1728J , and the field of meromorphic functions on X0(N) is C(j).

The meromorphic functions on X0(N). Define jN to be the function on H such that
jN (z) = j(Nz). For γ ∈ Γ0(1), one is tempted to say

jN (γz) = j(Nγz) = j(γNz) = j(Nz) = jN(z),

but, this is false in general, because Nγz �= γNz. However, it is true that jN (γz) = jN (z) if
γ ∈ Γ0(N). In fact, let γ =

(
a b
c d

)
∈ Γ0(N), so that c = Nc′ with c′ ∈ Z. Then

jN (γz) = j(
Naz +Nb

cz + d
) = j(

a(Nz) +Nb

c′(Nz) + d
) = j(γ′Nz)

where γ′ =

(
a Nb
c′ b

)
∈ Γ0(1), so

j(γ′Nz) = j(Nz) = jN (z).

Thus, we see that jN is invariant under Γ0(N), and therefore defines a meromorphic function
on X0(N).

Theorem 24.2. The field of meromorphic functions on X0(N) is C(j, jN ).

Proof. The curve X0(N) is a covering of X0(1) of degree m = (Γ0(1) : Γ0(N)). The general
theory implies that the field of meromorphic functions on X0(N) has degree m over C(j),
but we shall prove this again. Let {γ1 = 1, ..., γm} be a set of representatives for the right
cosets of Γ0(N) in Γ0(1), so that,

Γ0(1) =
m⋃
i=1

Γ0(N)γi (disjoint union).
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For any γ ∈ Γ0(1), {γ1γ, ..., γmγ} is also a set of representatives for the right cosets of Γ0(N)
in Γ0(1)—the family (Γ0(N)γiγ) is just a permutation of the family (Γ0(N)γi).

If f(z) is a modular function for Γ0(N), then f(γiz) depends only on the coset Γ0(N)γi.
Hence the functions {f(γiγz)} are a permutation of the functions {f(γiz)}, and any sym-
metric polynomial in the f(γiz) is invariant under Γ0(1); since such a polynomial obviously
satisfies the other conditions, it is a modular function for Γ0(1), and hence a rational function
of j. Therefore f(z) satisfies a polynomial of degree m with coefficients in C(j), namely,∏
(Y − f(γiz)). Since this holds for every meromorphic function on X0(N), we see that the

field of such functions has degree at most m over C(j).

Next I claim that all the f(γiz) are conjugate to f(z) over C(j): for let F (j, Y ) be the min-
imum polynomial of f(z) over C(j), so that F (j, Y ) is monic and irreducible when regarded
as a polynomial in Y with coefficients in C(j); on replacing z with γiz and remembering that
j(γiz) = j(z), we find that F (j(z), f(γiz)) = 0, which proves the claim.

If we can show that the functions j(Nγiz) are distinct, then it will follow that the minimum
polynomial of jN over C(j) has degree m, and that the field of meromorphic functions on
X0(N) has degree m over C(j), and is generated by jN .

Suppose j(Nγiz) = j(Nγjz) for some i �= j. Recall that j defines an isomorphism
Γ0(1)\H∗ → S (Riemann sphere), and so

j(Nγiz) = j(Nγjz)all z =⇒ ∃γ ∈ Γ0(1) such that Nγiz = γNγjz all z,

and this implies that (
N 0
0 1

)
γi = ±γ

(
N 0
0 1

)
γj .

Hence γiγ
−1
j ∈ Γ0(1) ∩

(
N 0
0 1

)−1
Γ0(1)

(
N 0
0 1

)
= Γ0(N), which contradicts the fact

that γi and γj lie in different cosets.

We saw in the proof that the minimum polynomial of jN over C(j) is

F (j, Y ) =
m∏
i=1

(Y − j(Nγiz)).

The symmetric polynomials in the j(Nγiz) are holomorphic on H. As they are rational
functions of j(z), they must in fact be polynomials in j(z), and so FN(j, Y ) ∈ C[j, Y ] (rather
than C(j)[Y ]).

On replacing j with the variable X, we obtain a polynomial FN (X, Y ) ∈ C[X, Y ],

FN(X, Y ) =
∑
cr,sX

rY s, cr,s ∈ C, c0,m = 1.

I claim that FN(X, Y ) is the unique polynomial of degree ≤ m in Y , with c0,m = 1, such
that

FN(j, jN ) = 0.

In fact, FN(X, Y ) generates the ideal in C[X, Y ] of all polynomials G(X, Y ) such that
G(j, jN ) = 0, from which the claim follows.

Proposition 24.3. The polynomial FN(X, Y ) has coefficients in Q.
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Proof. We know that

j(z) = q−1 +
∞∑
n=0

c(n)qn, c(n) ∈ Z.

When we substitute this into the equation

F (j(z), j(Nz)) = 0,

and equate coefficients of powers of q, we obtain a set of linear equations for the cr,s with
coefficients in Q, and when we adjoin the equation

c0,m = 1,

then the system determines the cr,s uniquely. Because the system of linear equations has a
solution in C, it also has a solution in Q (look at ranks of matrices); because the solution is
unique, the solution in C must in fact lie in Q. Therefore cr,s ∈ Q.

The polynomial FN(X, Y ) was introduced by Kronecker more than 100 years ago. It is
known to be symmetric in X and Y . For N = 2, it is

X3 + Y 3 −X2Y 2 + 1488XY (X + Y )− 162000(X2 + Y 2)+

40773375XY + 8748000000(X + Y )− 157464000000000.

It was computed for N = 3, 5, 7 by Smith (1878), Berwick (1916), and Herrmann (1974).
At this point the humans gave up, and left it to MACSYMA to compute F11 (1984). This
last computation took about 20 hours on a VAX-780, and the result is a polynomial with
coefficients up to 1060 that takes 5 pages to write out. It is important to know that the
polynomial exists; fortunately, it is not important to know what it is.

The curve X0(N) over Q. Let CN be the affine curve over Q with equation FN(X, Y ) = 0,
and let C̄N be the projective curve defined by FN made homogeneous. Then z �→
(j(z), j(Nz)) is a map X0(N) \ Ξ → CN (C), where Ξ is the set where j or jN has a pole.
This map extends uniquely to a map X0(N) → C̄N (C), which is an isomorphism except over
the singular points of C̄N , and the pair (X0(N), X0(N) → C̄N(C)) is uniquely determined
by C̄N (up to a unique isomorphism): it is the canonical “desingularization” of C̄N over C.

Now consider C̄N over Q. There is a canonical desingularization X → C̄N over Q, i.e., a
projective nonsingular curve X over Q, and a regular map X → C̄N that is an isomorphism
except over the singular points of C̄N , and the pair (X,X → C̄N ) is uniquely determined by
C̄N (up to unique isomorphism). When we pass to the C-points, we see that (X(C), X(C) →
C̄N (C)) has the property characterizing (X0(N), X0(N) → C̄N (C)), and so there is a unique
isomorphism of Riemann surfaces X0(N) → X(C) compatible with the maps to C̄N(C).

In summary, we have a well-defined curve X over Q, a regular map γ : X → C̄N over
Q, and an isomorphism X0(N) → X(C) whose composite with γ(C) is (outside a finite set)
z �→ (j(z), j(Nz)).

In future, we’ll often use X0(N) to denote the curve X over Q—it should be clear from
the context whether we mean the curve over Q or the Riemann surface. The affine curve
X0(N) \ {cusps} ⊂ X0(N) is denoted Y0(N); thus Y0(N)(C) = Γ0(1)\H.

Remark 24.4. It is known that the curve FN (X, Y ) = 0 is highly singular, because, in the
absence of singularities, the formula on p9 would predict much too high a genus.
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The points on the curve X0(N). Since we can’t write down an equation for X0(N) as
a projective curve over Q, we would at least like to know what its points are in any field
containing Q. This we can do.

We first look at the complex points ofX0(N), i.e., at the Riemann surfaceX0(N). Consider
the diagram:

{(E, S)}/≈ ↔ {(Λ, S)}/C× ↔ Γ0(N)\M/C× ↔ Γ0(N)\H
↓ ↓ ↓ ↓

{E}/≈ ↔ L/C× ↔ Γ0(1)\M/C× ↔ Γ0(1)\H

The bottom row combines maps in Section 10. All the symbols ↔ are natural bijections.

Recall thatM is the subset of C×C of pairs (ω1, ω2) such that $(ω1/ω2) > 0 (soM/C× ⊂
P1(C)), and that the bijectionM/C → H sends (ω1, ω2) to ω1/ω2. The rest of the right hand
square is now obvious.

Recall that the L is the set of lattices in C, and that the lattices defined by two pairs in
M are equal if and only if the pairs lie in the same Γ0(1)-orbit. Thus in passing from an
element ofM to its Γ0(1)-orbit we are forgetting the basis and remembering only the lattice.
In passing from an element of M to its Γ0(N)-orbit, we remember a little of the basis, for
suppose (

ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1
ω2

)
,

(
a b
c d

)
∈ Γ0(N).

Then

ω′
1 = aω1 + bω2

ω′
2 = cω1 + dω2 ≡ dω2 mod NΛ.

Hence
1

N
ω′
2 ≡

d

N
ω2 mod Λ.

Note that because

(
a b
c d

)
has determinant 1, gcd(d,N) = 1, and so 1

N
ω′
2 and

1
N
ω2 generate

the same cyclic subgroup S of order N in C/Λ. We see that the map

(ω1, ω2) �→ (Λ(ω1, ω2), <
1

N
ω2>)

defines a bijection from Γ0(N)\M to the set of pairs consisting of a lattice Λ in C and a cyclic
subgroup S of C/Λ of order N . Now (Λ, S) �→ (C/Λ, S) defines a one-to-one correspondence
between this last set and the set of isomorphism classes of pairs (E, S) consisting of an elliptic
curve over C and a cyclic subgroup S of E(C) of order N . An isomorphism (E, S) → (E ′, S ′)
is an isomorphism E → E ′ carrying S into S ′.
Note that E/S = C/Λ(ω1,

1
N
ω2) ↔ N ω1

ω2
, and so, if j(E) = j(z), then j(E/S) = j(Nz).

Now, for any field k ⊃ Q, define E0(N)(k) to be the set of isomorphism classes of pairs E
consisting of an elliptic curve E over k and a cyclic subgroup S ⊂ E(kal) of order N stable
under Gal(kal/k)—thus the subgroup S is defined over k, but not necessarily its elements.
The above remarks show that there is a canonical bijection

E0(N)(C)/≈→ Y0(N)

whose composite with the map Y0(N) → CN (C) is (E, S) �→ (j(E), j(E/S)). Here Y0(N)
denotes the Riemann surface Γ0(N)\H.
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Theorem 24.5. For any field k ⊃ Q, there is a map

E0(N)(k) → Y0(N)(k),

functorial in k, such that

(a) the composite E0(N)(k) → Y0(N)(k) → CN(k) is (E, S) �→ (j(E), j(E/S));
(b) for all k, E0(N)(k)/≈ → Y0(N)(k) is surjective, and for all algebraically closed k it

is bijective.

The map being functorial in k means that for every homomorphism σ : k → k′ of fields,
the diagram

E0(N)(k′) → Y0(N)(k
′)

↑ σ ↑ σ
E0(N)(k) → Y0(N)(k)

commutes. In particular, E0(N)(kal) → Y0(N)(k
al) commutes with the actions of Gal(kal/k).

Since Y0(N)(k
al)Gal(k

al/k) = Y0(N)(k), this implies that

Y0(N)(k) = (E0(N)(kal)/≈)Gal(kal/k)

for any field k ⊃ Q.

This description of the points can be extended to X0(N) by adding to E0(N) certain
“degenerate” elliptic curves.

Variants. For our applications to elliptic curves, we shall only need to use the quotients
of H∗ by the subgroups Γ0(N), but quotients by other subgroups are also of interest. For
example, let

Γ1(N) =

{(
a b
c d

)∣∣∣∣∣ a ≡ 1 ≡ d mod N, c ≡ 0 mod N

}
.

The quotient X1(N) = Γ1(N)\H∗ again defines a curve, also denoted X1(N), over Q, and
there is a theorem similar to (24.5) but with E1(N)(k) the set of pairs (E, P ) consisting of
an elliptic curve E over k and a point P ∈ E(k) of order N .
In this case, the map

E1(N)(k)/≈ → Y1(N)(k)

is a bijection whenever 4|N . The curve X1(N) has genus 0 exactly for N = 1, 2, . . . , 10, 12.
Since X1(N) has a point with coordinates in Q for each of these N (there does exist an
elliptic curve over Q with a point of that order), X1(N) ≈ P1, and so X1(N) has infinitely
many rational points. Therefore, for N = 1, 2, . . . , 10, 12, there are infinitely many elliptic
curves over Q with a point of order N (rational over Q). Mazur showed, that for all other
N , Y0(N) is empty, and so these are the only possible orders for a point on an elliptic curve
over Q (Conjecture of Beppo Levi).

25. Modular Forms

It is difficult to construct functions on H invariant under a subgroup Γ of SL2(Z) of finite
index. One strategy is to construct functions, not invariant under Γ, but transforming in
a certain fixed manner. Two functions transforming in the same manner will be invariant
under Γ. This idea suggests the notion of a modular form.



126 J.S. MILNE

Definition of a modular form.

Definition 25.1. Let Γ be a subgroup of finite index in SL2(Z). A modular form for Γ of
weight27 2k is a function f : H → C such that

(a) f is holomorphic on H;

(b) for any γ =

(
a b
c d

)
∈ Γ, f(γz) = (cz + d)2kf(z);

(c) f is holomorphic at the cusps.

Recall that the cusps are the points in H∗ not in H. Since Γ is of finite index in SL2(Z),

T h =

(
1 h
0 1

)
is in Γ for some integer h > 0, which we may take to be as small as possible.

Then condition (b) implies that f(T hz) = f(z), i.e., that f(z + h) = f(z), and so

f(z) = f∗(q), q = e2πiz/h,

and f∗ is a function on a neighbourhood of 0 ∈ C, with 0 removed. To say that f is
holomorphic at ∞ means that f∗ is holomorphic at 0, and so

f(z) =
∑
n≥0
c(n)qn, q = e2πiz/h.

For a cusp r �= ∞, choose a γ ∈ SL2(Z) such that γ(∞) = r, and then the requirement is
that f ◦ γ be holomorphic at ∞. It suffices to check the condition for only one cusp in each
Γ-orbit.

A modular form is called a cusp form if it is zero at the cusps. For example, for the cusp
∞ this means that

f(z) =
∑
n≥1
c(n)qn, q = e2πiz/h.

Remark 25.2. Note that, for γ =

(
a b
c d

)
∈ SL2(Z),

dγz = d
az + b

cz + d
=
a(cz + d)− c(az + b)

(cz + d)2
dz = (cz + d)−2dz.

Thus condition (25.1b) says that f(z)(dz)k is invariant under the action of Γ.

Write M2k(Γ) for the vector space of modular forms of weight 2k, and S2k(Γ) for the
subspace28 of cusp forms. A modular form of weight 0 is a holomorphic modular function (i.e.,
a holomorphic function on the compact Riemann surface X(Γ)), and is therefore constant:
M0(Γ) = C. The product of modular forms of weight 2k and 2k′ is a modular form of weight
2(k+k′), which is a cusp form if one of the two forms is a cusp form. Therefore ⊕k≥0M2k(Γ)
is a graded C-algebra.

Proposition 25.3. Let π be the quotient map H∗ → Γ0(N)\H∗, and for any holomorphic
differential ω on Γ0(N)\H∗, set π∗ω = fdz. Then ω �→ f is an isomorphism from the space
of holomorphic differentials on Γ0(N)\H∗ to S2(Γ0(N)).

27k and −k are also used.
28The S is for “Spitzenform”, the German name for cusp form. The French call them “forme parabolique”.
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Proof. The only surprise is that f is necessarily a cusp form rather than just a modular
form. I explain what happens at ∞. Recall (p122) that there is a neighbourhood U of ∞ in
Γ0(N)\H∗ and an isomorphism q : U → D (some disk) such that q ◦ π = e2πiz. Consider the
differential g(q)dq on U . Its inverse image on H is

g(e2πiz)d(e2πiz) = 2πi · g(e2πiz) · e2πizdz = 2πifdz

where f(z) = g(e2πiz) · e2πiz. If g is holomorphic at 0, then g(q) =
∑
n≥0 c(n)q

n, and so the
q-expansion of f is q

∑
n≥0 c(n)q

n, which is zero at ∞.

Corollary 25.4. The C-vector space S2(Γ0(N)) has dimension equal to the genus of X0(N).
Proof. It is part of the theory surrounding the Riemann-Roch theorem that the holomorphic
differential forms on a compact Riemann surface form a vector space equal to the genus of
the surface.

Hence, there are explicit formulas for the dimension of S2(Γ0(N))—see p123. For example,
it is zero for N ≤ 10, and has dimension 1 for N = 11. In fact, the Riemann-Roch theorem
gives formulas for the dimension of S2k(Γ0(N)) for all N .

The modular forms for Γ0(1). In this section, we find the C-algebra ⊕k≥0M2k(Γ0(1)).

We first explain a method of constructing functions satisfying (25.1b). As before, let L be
the set of lattices in C, and let F : L → C be a function such that

F (λΛ) = λ−2kF (Λ), λ ∈ C, Λ ∈ L.
Then

ω2k2 F (Λ(ω1, ω2))

depends only on the ratio ω1 : ω2, and so there is a function f(z) defined on H such that

ω2k2 F (Λ(ω1, ω2)) = f(ω1/ω2), whenever $(ω1/ω2) > 0.

For γ =

(
a b
c d

)
∈ SL2(Z), Λ(aω1 + bω2, cω1 + dω2) = Λ(ω1, ω2) and so

f(
az + b

cz + d
) = (cz + d)−2kF (Λ(z, 1)) = (cz + d)−2kf(z).

When we apply this remark to the Eisenstein series

G2k(Λ) =
∑

ω∈Λ,ω 	=0

1

ω2k
,

we find that the function G2k(z) =df G2k(Λ(z, 1)) satisfies (25.1b). In fact:

Proposition 25.5. For all k > 1, G2k(z) is a modular form of weight 2k for Γ0(1), and ∆
is a cusp form of weight 12.

Proof. We know that G2k(z) is holomorphic on H, and the formula on p125 shows that it is
holomorphic at ∞, which is the only cusp for Γ0(1) (up to Γ0(1)-equivalence). The statement
for ∆ is obvious from its definition ∆ = g4(z)

3 − 27g4(z)
2, and its q-expansion (p125).
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Theorem 25.6. The C-algebra ⊕k≥0M2k(Γ0(1)) is generated by G4 and G6, and G4 and G6
are algebraically independent over C. Therefore

C[G4, G6]
≈−→ ⊕k≥0M2k(Γ0(1)), C[G4, G6] ≈ C[X, Y ]

(isomorphisms of graded C-algebras if X and Y are given weights 4 and 6 respectively).
Moreover,

f �→ f ·∆ : M2k−12(Γ0(1)) → S2k(Γ0(1))
is a bijection.

Proof. Straightforward—see Serre, Cours..., VII.3.2.

Therefore, for k ≥ 0,

dimM2k(Γ0(N)) =

{
[k/6] if k ≡ 1 mod 6
[k/6] + 1 otherwise.

Here [x] is the largest integer ≤ x.
Theorem 25.7 (Jacobi). There is the following formula:

∆ = (2π)12q
∞∏
n=1

(1− qn)24, q = e2πiz.

Proof. Let

F (z) = q
∞∏
n=1

(1− qn)24.

From the theorem, we know that the space of cusp forms of weight 12 has dimension 1, and
therefore if we can show that F (z) is such a form, then we’ll know it is a multiple of ∆, and
it will be follow from the formula on p125 that the multiple is (2π)12.

Because SL2(Z)/{±I} is generated by T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
, to verify the

conditions in (25.1), it suffices to verify that F transforms correctly under T and S. For T
this is obvious from the way we have defined F , and for S it amounts to checking that

F (−1

z
) = z12F (z).

This is trickier than it looks, but there are short (2 page) elementary proofs—see for example,
Serre, ibid., VII.4.4.

26. Modular Forms and the L-series of Elliptic Curves

In this section, I’ll discuss how the L-series classify the elliptic curves over Q up to isogeny,
and then I’ll explain how the work of Hecke, Petersson, and Atkin-Lehner leads to a list of
candidates for the L-series of such curves, and hence suggests a classification of the isogeny
classes.
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Dirichlet Series. A Dirichlet series is a series of the form

f(s) =
∑
n≥1
a(n)n−s, a(n) ∈ C, s ∈ C.

The simplest example of such a series is, of course, the Riemann zeta function
∑
n≥1 n

−s. If
there exist positive constants A and b such that |∑n≤x a(n)| ≤ Axb for all large x, then the
series for f(s) converges to an analytic function on the half-plane -(s) > b.
It is important to note that the function f(s) determines the a(n)’s, i.e., if

∑
a(n)n−s and∑

b(n)n−s are equal as functions of s on some half-plane, then a(n) = b(n) for all n. In
fact, by means of the Mellin transform and its inverse (see 26.4 below), f determines, and is
determined by, a function g(q) convergent on some disk about 0, and g(q) =

∑
a(n)qn.

We shall be especially interested in Dirichlet series that are equal to Euler products, i.e.,
those that can be expressed as

f(s) =
∏
p

1

1− Pp(p−s)
where each Pp is a polynomial.

Dirichlet series arise in two essentially different ways: from analysis and from geometry
and number theory. One of big problems mathematics is to show that the second set of
Dirichlet series is a subset of the first, and to identify the subset. This is a major theme
in Langlands’s philosophy, and the rest of the course will be concerned with explaining how
Wiles was able to identify the L-series of (almost all) elliptic curves over Q with certain
L-series attached to modular forms.

The L-series of an elliptic curve. Recall that for an elliptic curve E over Q, we define

L(E, s) =
∏

p good

1

1− app−s + p1−s · ∏
p bad

1

1− app−s
where

ap =


p + 1−Np p good;
1 p split nodal;
−1 p nonsplit nodal;
0 p cuspidal.

Recall also that the conductor N = NE/Q of Q is
∏
p p

fp where fp = 0 if E has good reduction
at p, fp = 1 if E has nodal reduction at p, and fp ≥ 2 otherwise (and = 2 unless p = 2, 3).

On expanding out the product (cf. below), we obtain a Dirichlet series

L(E, s) =
∑
ann

−s.

This series has, among others, the following properties:

(a) (Rationality) Its coefficients an lie in Q.
(b) (Euler product) It can be expressed as an “Euler product”; in fact, that’s how it is

defined.
(c) (Functional equation) Conjecturally it can be extended analytically to a meromorphic

function on the whole complex plane that satisfies the functional equation

Λ(E, s) = wΛ(E, 2− s), w = ±1,
where Λ(E, s) = N

s/2
E/Q(2π)

−sΓ(s)L(E, s).
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L-series and isogeny classes. Recall that two elliptic curves E and E ′ are said to be
isogenous if there is a nonconstant regular map from one to the other. By composing the
map with a translation, we will then get a map sending 0 to 0, in which case it will also be a
homomorphism for the group structures on E and E ′. A nonconstant map ϕ : E → E ′ such
that ϕ(0) = 0 is called an isogeny.

Lemma 26.1. Isogeny is an equivalence relation.

Proof. The identity map is an isogeny, so it is reflexive, and the composite of two isogenies
is an isogeny, so it is transitive. Let ϕ : E → E ′ be an isogeny, and let S be its kernel. Since
S is finite, it will be contained in En for some n, and there are isogenies

E → E/S → E/En
‖ ‖ ‖
E → E ′ → E

—the isomorphism E → E/En is induced by multiplication by n in

0 → En → E
n−→ E → 0.

Here I’m assuming facts about elliptic curves and their quotients by finite subgroups ([S1]
III.4).

An isogeny E → E ′ induces a homomorphism E(Q) → E ′(Q) which, in general, will be
neither injective nor surjective. The ranks of E(Q) and E ′(Q) will be the same, but their
torsion subgroups will in general be different. Surprisingly, isogenous curves over a finite
field do have the same number of points.

Theorem 26.2. Let E and E ′ be elliptic curves over Q. If E and E ′ are isogenous, then
Np(E) = Np(E

′) for all good p. Conversely, if Np(E) = Np(E
′) for sufficiently many good

p, then E is isogenous to E ′.

Proof. The fact that allows us to show that Np(E) = Np(E
′) when E and E ′ are isogenous

is that Np(E) is the degree of a map E → E, in fact, it is the degree of ϕ − 1 where ϕ is
the Frobenius map (see p101). An isogeny α : E → E ′ induces and isogeny αp : Ep → E ′

p

on the reductions of the curves modulo p, which commutes with the Frobenius map: if
α(x : y : z) = (P (x, y, z) : Q(x : y : z), R(x : y : z), P,Q,R ∈ Fp[X, Y, Z], then

αϕ(x : y : z) = (P (xp, yp, zp), . . . )

whereas
ϕα(x : y : z) = (P (x, y, z)p, . . . ),

which the characteristic p binomial theorem shows to be equal. Because the diagram

E
ϕ−1−−→ E

↓ α ↓ α
E ′ ϕ−1−−→ E ′

commutes, we see that

degα · deg(ϕ− 1) = deg(ϕ− 1) · degα,
so,

degα ·Np(E) = Np(E
′) · degα,
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and we can cancel deg α.

The converse is much more difficult. It was conjectured by Tate about 1963, and proved
under various hypotheses by Serre. It was proved in general by Faltings in his paper on
Mordell’s conjecture (1983).

Faltings’s result gives an effective procedure for deciding whether two elliptic curves over
Q are isogenous: there is a constant P such that if Np(E) = Np(E

′) for all good p ≤ P ,
then E and E ′ are isogenous. Unfortunately, P is impossibly large, but, in practice, if your
computer fails to find a p with Np(E) �= Np(E

′) in a few minutes you can be very confident
that the curves are isogenous.

It is not quite obvious, but it follows from the theory of Néron models, that isogenous
elliptic curves have the same type of reduction at every prime. Therefore, isogenous curves
have exactly the same L-series and the same conductor. Because the L-series is determined
by, and determines the Np, we have the following corollary.

Corollary 26.3. Two elliptic curves E and E ′ are isogenous if and if L(E, s) = L(E ′, s).

We therefore have a one-to-one correspondence between

{isogeny classes of elliptic curves over Q} ↔ {certain L-series}

In the remainder of this section we shall identify (using only complex analysis) the L-series
arising from elliptic curves over Q (in fact, we’ll identify the L-series of the elliptic curves
with a fixed conductor).

Since we shall be classifying elliptic curves only up to isogeny, it is worth noting that a
theorem of Shafarevich implies there are only finitely many isomorphism classes of elliptic
curves over Q with a given conductor, hence only finitely many in each isogeny class—see
[S1], IX.6.

The L-series of a modular form. Let f be a modular form of weight 2k for Γ0(N). By
definition, it is invariant under z �→ z+1 and is zero at the cusp ∞, and so can be expressed

f(s) =
∑
n≥1
c(n)qn, q = e2πiz, c(n) ∈ C.

The L-series of f is the Dirichlet series

L(f, s) =
∑
c(n)n−s, s ∈ C.

A rather rough estimate shows that |c(n)| ≤ Cnk for some constant C , and so this Dirichlet
series is convergent for -(s) > k + 1.

Remark 26.4. Let f be cusp form. The Mellin transform of f (more accurately, of the
function y �→ f(iy) : R>0 → C) is defined to be

g(s) =
∫ ∞

0
f(iy)ys

dy

y
.
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Ignoring (as usual) questions of convergence, we find that

g(s) =
∫ ∞

0

∞∑
n=1

cne
−2πnyys

dy

y

=
∞∑
n=1

cn

∫ ∞

0
e−t(2πn)−sts

dt

t
(t = 2πny)

= (2π)−sΓ(s)
∞∑
n=1

c(n)n−s

= (2π)−sΓ(s)L(f, s).

For the experts, the Mellin transform is the version of the Fourier transform appropriate for
the multiplicative group R>0.

Modular forms whose L-series have a functional equations. Let αN =

(
0 −1
N 0

)
.

Then

αN

(
a b
c d

)
α−1N =

(
0 −1
N 0

)(
a b
c d

)(
0 1/N
−1 0

)
=

(
d −c/N

−Nb a

)
,

and so conjugation by αN preserves Γ0(N). Define

(wNf)(z) = (
√
Nz)2kf(−1/z).

Then wN preserves S2k(Γ0(N)) and has order 2, w2N = 1. Therefore the eigenvalues of wN are
±1 (or perhaps just +1), and S2k(Γ0(N)) is a direct sum of the corresponding eigenspaces
S2k = S+12k ⊕ S−1

2k .

Theorem 26.5 (Hecke). Let f ∈ S2k(Γ0(N)) be a cusp form in the ε-eigenspace, ε = 1 or
−1. Then f extends analytically to a holomorphic function on the whole complex plane, and
satisfies the functional equation

Λ(f, s) = ε(−1)kΛ(f, k− s),
where

Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s).

Proof. We omit the proof—it involves only fairly straightforward analysis (see Knapp,
p270).

Thus we see that, for k = 2, L(f, s) has exactly the functional equation we hope for the
L(E, s).

Modular forms whose L-functions are Euler products. Write

q
∞∏
1

(1− qn)24 =∑
τ (n)qn.

The function n �→ τ (n) is called the Ramanujan τ -function. Ramanujan conjectured that
it had the following properties:

(a) |τ (p)| ≤ 2p11/2;

(b)

{
τ (mn) = τ (m)τ (n) if gcd(m,n) = 1;

τ (p) · τ (pn) = τ (pn+1) + p11τ (pn−1) if p is prime and n ≥ 1.
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Conjecture (a) was proved by Deligne: he first showed that τ (p) = α + β where α and β
occur as the reciprocal roots of a “P11(T )” (see p103), and so (a) became a consequence of
his proof of the Riemann hypothesis.

Conjecture (b) was proved by Mordell in 1917 in a paper in which he introduced the
first examples of Hecke operators. Consider a modular form f of weight 2k for Γ0(N) (e.g.,
∆ = (2π)12q

∏
(1− qn)24, which is a modular form of weight 12 for Γ0(1)), and write

L(f, s) =
∑
n≥0
c(n)n−s.

Proposition 26.6. The Dirichlet series L(f, s) has an Euler product expansion of the form

L(f, s) =
∏
p|N

1

1− c(p)p−s
∏

gcd(p,N)=1

1

1− c(p)p−s + p2k−1−s

if (and only if)

(∗)


c(mn) = c(m)c(n) if gcd(m,n) = 1;
c(p) · c(pr) = c(pr+1) + p2k−1c(pr−1), r ≥ 1, if p does not divide N ;

c(pr) = c(p)r, r ≥ 1, if p|N.
Proof. For a prime p not dividing N , define

Lp(s) =
∑
c(pm)p−ms = 1 + c(p)p−s + c(p2)(p−s)2 + · · · .

By inspection, the coefficient of (p−s)r in the product

(1− c(p)p−s + p2k−1p−s)Lp(s)
is

1 for r = 0
0 for r = 1

· · ·
c(pr+1)− c(p)c(pr) + p2k−1c(pr−1) for r + 1.

Therefore

Lp(s) =
1

1− c(p)p−s + p2k−1−s
if and only if the second equation in (*) holds.

Similarly,

Lp(s) =df

∑
c(pr)p−rs =

1

1− c(p)p−s
if and only if the third equation in (*) holds.

If n ∈ N factors as n =
∏
prii , then the coefficient of (p−s)n in

∏
Lp(s) is

∏
c(prii ), which

equals c(n) if (*) holds.

Remark 26.7. The proposition says that L(f, s) is equal to an Euler product of the above
form if and only if n �→ c(n) is weakly multiplicative and if the c(pm) satisfy a suitable
recurrence relation. Note that (∗), together with the normalization c(1) = 1, shows that the
c(n) are determined by the c(p) for p prime.
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Hecke defined linear maps

T (n) : S2k(Γ0(N)) → S2k(Γ0(N)), n ≥ 1,

and proved the following theorems.

Theorem 26.8. The maps T (n) have the having the following properties:

(a) T (mn) = T (m)T (n) if gcd(m,n) = 1;
(b) T (p) · T (pr) = T (pr+1) + p2k−1T (pr−1) if p doesn’t divide N ;
(c) T (pr) = T (p)r, r ≥ 1, p|N ;
(d) all T (n) commute.

Theorem 26.9. Let f be a cusp form of weight 2k for Γ0(N) that is simultaneously an
eigenvector for all T (n), say T (n)f = λ(n)f , and let

f(z) =
∞∑
n=1

c(n)qn, q = e2πiz.

Then
c(n) = λ(n)c(1).

Note that c(1) �= 0, because otherwise c(n) = 0 for all n, and so f = 0.

Corollary 26.10. Let f be as in Theorem 26.9, and normalize f so that c(1) = 1. Then

L(f, s) =
∏
p|N

1

1− c(p)p−s
∏

gcd(p,N)=1

1

1− c(p)p−s + p2k−1−s

Example 26.11. Since S12(Γ0(1)) has dimension 1, ∆ must be an eigenform for all T (n),
which implies (b) of Ramanujan’s conjecture.

Definition of the Hecke operators. I first explain the definition of the Hecke operators
for the full group Γ0(1) = SL2(Z).

Recall that we have canonical bijections

L/C× ↔ Γ0(1)\M/C× ↔ Γ0(1)\H.

Moreover, the equation
f(z) = F (Λ(z, 1))

defines a one-to-one correspondence between

(a) functions F : L → C such that F (λΛ) = λ−2kF (Λ), λ ∈ C×;

(b) functions f : H → C such that f(γz) = (cz + d)2kf(z), γ =

(
a b
c d

)
.

We’ll work first with L.
Let D be the free abelian group generated by the Λ ∈ L; thus an element of D is a finite

sum ∑
nΛ[Λ], nΛ ∈ Z, Λ ∈ L,

and two such sums
∑
nΛ[Λ] and

∑
n′Λ[Λ] are equal if and only if nΛ = n

′
Λ for all Λ.

For n ≥ 1, define
T (n) : D → D, T (n) =

∑
(Λ:Λ′)=n

[Λ′]
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and

R(n) : D → D, R(n) = [nΛ].

Proposition 26.12. (a) T (mn) = T (m) ◦ T (n) if gcd(m,n) = 1;
(b) T (pr) ◦ T (p) = T (pr+1) + pR(p) ◦ T (pr−1).

Proof. (a) For a lattice Λ,

T (mn)[Λ] =
∑
[Λ′′] sum over Λ′′, (Λ : Λ′′) = mn),

T (m) ◦ T (n)[Λ] =
∑
[Λ′′] (sum over pairs (Λ′,Λ′′) with (Λ : Λ′) = n, (Λ′ : Λ′′) = m).

But if Λ′′ is a lattice of indexmn, then Λ/Λ′′ is an abelian group of ordermn with gcd(m,n) =
1, and so has a unique subgroup of order m. The inverse image of this subgroup in Λ will
be the unique lattice Λ′ ⊃ Λ′′ such that (Λ′ : Λ′′) = m. Thus the two sums are the same.

(b) For a lattice Λ,

T (pr) ◦ T (p)[Λ] =
∑
[Λ′′] (sum over pairs (Λ′,Λ′′) with (Λ : Λ′) = p, (Λ′ : Λ′′) = pr),

T (pr+1)[Λ] =
∑
[Λ′′] (sum of Λ′′ with (Λ : Λ′′) = pr+1);

pR(p) ◦ T (pn−1)[Λ] = p ·∑R(p)[Λ′] (sum over Λ′ with (Λ : Λ′) = pr−1)
= p ·∑[Λ′′] (sum over Λ′′ ⊂ pΛ with (pΛ : Λ′′) = pr−1).

Each of these is a sum of lattices Λ′′ of index pr+1 in Λ. Fix such a lattice Λ′′, and let a be
the number of times that [Λ′′] occurs in the first sum, and b the number of times it occurs
in the third sum. It occurs exactly once in the second sum, and so we have to prove that

a = 1 + pb.

There are two cases to consider.

The lattice Λ′′ is not contained in pΛ. In this case, b = 0, and a is the number of lattices
Λ′ such that (Λ : Λ′) = p and Λ′ ⊃ Λ′′. Such lattices are in one-to-one correspondence with
the subgroups of Λ/pΛ of index p containing the image Λ̄′′ of Λ′′ in Λ/pΛ. But (Λ : pΛ) = p2

and Λ/pΛ �= Λ̄′′ �= 0, and so there is only one such subgroup, namely Λ̄′′ itself. Therefore
there is only one possible Λ′, namely pΛ + Λ′′, and so a = 1.

The lattice Λ′′ ⊃ pΛ. Here b = 1. Every lattice Λ′ of index p in Λ contains pΛ, hence also
Λ′′, and the number of such Λ′’s is the number of lines through the origin in Λ/pΛ ≈ F2p, i.e.,
the number of points in P1(Fp), which is p + 1 as required.

Corollary 26.13. For any m and n,

T (m) ◦ T (n) =∑
d · R(d) ◦ T (mn/d2)

(sum is over the positive divisors d of gcd(m,n)).

Proof. Prove by induction on s that

T (pr)T (ps) =
∑
i≤r,s

pi · R(pi) ◦ T (pr+s−2i),

and then apply (a) of the theorem.

Corollary 26.14. Let H be the Z-subalgebra of End(D) generated by T (p) and R(p) for p
prime; then H is commutative, and it contains T (n) for all n.

Proof. Obvious from the theorem.
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Let F be a function L → C. We can extend F by linearity to a function F : D → C,

F (
∑
nΛ[Λ]) =

∑
nΛF (Λ).

For any linear map T : D → D, we define T · F to be the function L → C such that
T · F (Λ) = F (TΛ). For example,

(T (n) · F )(Λ) = ∑
(Λ:Λ′)=n

F (Λ′),

and if F (λΛ) = λ−2kF (Λ), then
R(n) · F = n−2kF.

Proposition 26.15. If F : L → C has the property that F (λΛ) = λ−2kF (Λ) for all λ,Λ,
then so also does T (n) · F , and

(a) T (mn) · F = T (m) · T (n) · F if gcd(m,n) = 1;
(b) T (p) · T (pr) · F = T (pr+1) · F + p1−2kT (pr−1) · F if p doesn’t divide N ;
(c) T (pr) · F = T (p)r · F , r ≥ 1, p|N.
Now let f(z) be a modular form of weight 2k, and let F be the associated function on L.

We define T (n) · f to be the function on H associated with n2k−1 · T (n) · F . Thus
(T (n) · f)(z) = n2k−1(T (n) · F )(Λ(z, 1)).

Theorem 26.8 in the case N = 1 follows easily from the Proposition. To prove Theorem 26.9
we need an explicit description of the lattices of index n in a fixed lattice.

Write M2(Z) for the ring of 2× 2 matrices with coefficients in Z.

Lemma 26.16. For any A ∈M2(Z), there exists a U ∈M2(Z)
× such that

UA =

(
a b
0 d

)
, ad = n, a ≥ 1, 0 ≤ b < d.

Moreover, the integers a, b, d are uniquely determined.

Proof. Let A =

(
a b
c d

)
, and suppose ra+sc = a′ where a′ = gcd(a, c). Then gcd(r, s) = 1,

and so there exist e, f such that re + sf = 1. Now(
r s

−f e

)(
a b
c d

)
=

(
a′ b′

c′ d′

)

and det

(
r s

−f e

)
= 1. Now apply the appropriate elementary row operations. For the

uniqueness, note that multiplication by such a U doesn’t change the greatest common divisor
of the entries in any column, and so a is uniquely determined. Now d is uniquely determined
by the equation ad = n, and b is obviously uniquely determined modulo d.

For the lattice Λ(z, 1), the sublattices of index n are exactly the lattices Λ(az+b, d) where
(a, b, d) runs through the triples in the lemma. Therefore

(T (n) · f)(z) = n2k−1 ∑
a,b,d

d−2kf(
az + b

d
)
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where the sum is over the same triples. On substituting this into the q-expansion

f =
∑
m≥1
c(m)qm

one finds (after a little work) that

T (n) · f = c(n)q + · · · .
Therefore, if T (n) · f = λ(n)f , then

λ(n)c(1) = c(n).

This proves Theorem 26.9 in the case N = 1.

When N �= 1, the theory of the Hecke operators is much the same, only a little more
complicated. For example, instead of L, one must work with the set of pairs (Λ, S) where
Λ ∈ L and S is a cyclic subgroup of order N in C/Λ. This is no problem for the T (n)’s with
gcd(n,N) = 1, but the T (p)’s with p|N have to be treated differently.

Thus the problem of finding cusp forms f whose L-series have Euler products becomes
a problem of finding simultaneous eigenforms for the linear map T (n) : S2k(Γ0(N)) →
S2k(Γ0(N)). Hecke had trouble doing this because he didn’t know some linear algebra,
which we now review.

Linear algebra: the spectral theorem. Recall that a Hermitian form on a vector space
V is a mapping <,>: V × V → C such that <v,w>= <w, v> and <,> is linear in one
variable and conjugate-linear in the second. Such a form is said to be positive-definite if
<v, v>> 0 whenever v �= 0. A linear map α : V → V is Hermitian or self-adjoint relative to
<,> if

<αv, w>=<v, αw>, all v, w.

Theorem 26.17 (Spectral Theorem). Let V be a finite-dimensional complex vector space
with a positive-definite Hermitian form <,>.

(a) Any self-adjoint linear map α : V → V is diagonalizable, i.e., V is a direct sum of
eigenspaces for α.

(b) Let α1, α2, . . . be a sequence of commuting self-adjoint linear maps V → V ; then V
has a basis of vectors that are eigenvectors for all αi.

Proof. (a) Because C is algebraically closed, α has an eigenvector e1. Let V1 be (Ce1)
⊥.

Then V1 is stable under α, and so contains an eigenvector e2. Let V2 = (Ce1 ⊕ Ce2)
⊥ etc.

(b) Now suppose V = ⊕V (λi) where the λi are the distinct eigenvalues of α1. Because
α2 commutes with α1, it stabilizes each V (λi), and so each V (λi) can be decomposed into a
direct sum of eigenspaces for α2. Continuing in this fashion, we arrive at a decomposition
V = ⊕Vj such that each αi acts as a scalar on each Vj. Choose bases for each Vj, and take
their union.

This suggests that we should look for a Hermitian form on S2k(Γ0(N)) for which the T (n)’s
are self-adjoint.
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The Petersson inner product. As Poincaré pointed out, the unit disk forms a model
for hyperbolic geometry29: if one defines a “line” to be a segment of a circle orthogonal
to the circumference of the disk, angles to be the usual angles, and distances in terms of
cross-ratios, one obtains a geometry that satisfies all the axioms for Euclidean geometry
except that given a point P and a line 4, there exist more than one line through P not
meeting 4. The map z �→ z−i

z+i
sends the upper-half plane onto the unit disk, and, being

fractional-linear, maps circles and lines to circles and lines (collectively, not separately) and
preserves angles. Therefore the upper half-plane is also a model for hyperbolic geometry.
The group PSL2(R) =df SL2(R)/{±I} is the group of transformations preserving distances
and orientation, and therefore plays the same role as the group of orientation preserving
affine transformations of the Euclidean plane. The next proposition shows that the measure
µ(U) =

∫∫
U
dxdy
y2

plays the same role as the measure
∫∫
U dxdy on sets in the Euclidean plane—

it is invariant under transformations in PGL2(R).

Proposition 26.18. Define µ(U) =
∫∫
U
dxdy
y2
; then µ(γU) = µ(U) for all γ ∈ SL2(R).

Proof. If γ =

(
a b
c d

)
, then

dγ

dz
=

1

(cz + d)2
, $(γz) = $(z)

|cz + d|2 .

The next lemma shows that

γ∗(dxdy) =
dxdy

|cz + d|4 (z = x+ iy),

and so dxdy
y2

, y = $(z), is invariant under γ.

Lemma 26.19. For any holomorphic function w(z), the map z �→ w(z) multiplies areas by
|w′(z)|2.
Proof. Write w(z) = u(x, y) + iv(x, y), so that z �→ w(z) is the map

(x, y) �→ (u(x, y), v(x, y)),

whose Jacobian is ∣∣∣∣∣ ux vx
uy vy

∣∣∣∣∣ = uxvy − vxuy.
On the otherhand, w′(z) = ux + ivx, so that

|w′(z)|2 = u2x + v2x.
The Cauchy-Riemann equations state that ux = vy and vx = −uy, and so the two expressions
agree.

29Apparently Bolyai showed that it is possible to square the circle in hyperbolic geometry. A recent
popular (shoddy) book on Fermat’s Last Theorem contains the following mystifying statement (in italics):
If no one believes that it is possible to square the circle despite Bolyai’s proof, why should we believe Wiles’s
proof of Fermat’s last theorem, which also uses hyperbolic geometry.
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If f, g are modular forms of weight 2k for Γ0(N), then

f(z) · g(z)y2k
is invariant under SL2(R), which suggests defining

<f, g>=
∫∫

D
fḡy2k

dxdy

y2

for D a fundamental domain for Γ0(N)—the above discussion shows that (assuming the
integral converges) <f, g> will be independent of the choice of D.

Theorem 26.20 (Petersson). The above integral converges provided at least one of f or
g is a cusp form. It therefore defines a positive-definite Hermitian form on the vector space
S2k(Γ0(N)) of cusp forms. The Hecke operators T (n) are self-adjoint for all n relatively
prime to N .

Proof. Fairly straightforward calculus—see Knapp, p280.

On putting the theorems of Hecke and Petersson together, we find that there exists a
decomposition

S2k(Γ0(N)) = ⊕Vi
of S2k into a direct sum of orthogonal subspaces Vi, each of which is a simultaneous eigenspace
for all T (n) with gcd(n,N) = 1. The T (p) for p|N stabilize each Vi and commute, and so
there does exist at least one f in each Vi that is also an eigenform for the T (p) with p|N . If
we scale f so that f = q +

∑
n≥2 c(n)q

n, then

L(f, s) =
∏
p

1

1− c(p)p−s + p2k−1−2s
∏
p|N

1

1− cpp−s

where the first product is over the primes not dividing N , and the second is over those
dividing N .

The operator wN is self-adjoint for the Petersson product, and does commute with the
T (n)’s with gcd(n,N) = 1, and so each Vi decomposes into orthogonal eigenspaces

Vi = V
+1
i ⊕ V −1

i

for wN . Unfortunately, wN doesn’t commute with the T (p)’s, p|N , and so the decompostion
is not necessarily stable under these T (p)’s. Thus, the results above do not imply that
there is a single f that is simultaneously an eigenvector for wN (and hence has a functional
equation) and for all T (n) (and hence is equal to an Euler product).

New forms: the theorem of Atkin and Lehner. The problem left by the last subsection
has a simple remedy. If M |N , then Γ0(M) ⊃ Γ0(N), and so S2k(Γ0(M)) ⊂ S2k(Γ0(N)).
Recall that the N turns up in the functional equation for L(f, s), and so it is not surprising
that we run into trouble when we mix f ’s of “level” N with f ’s that are really of levelM |N ,
M < N .

The way out of the problem is to define a cusp form that it in some subspace S2k(Γ0(M)),
M |N , M < N , to be old. The old forms form a subspace Sold2k (Γ0(N)) of S2k(Γ0(N)), and
the orthogonal complement Snew2k (Γ0(N)) is called the space of new forms. It is stable under
all the operators T (n) and wN , and so Snew2k decomposes into a direct sum of orthogonal
subspaces Wi,

Snew2k (Γ0(N)) = ⊕Wi
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each of which is a simultaneous eigenspace for all T (n) with gcd(n,N) = 1. The T (p) for
p|N and wN stabilize each Wi.

Theorem 26.21 (Atkin-Lehner (1970)). The spaces Wi in the above decomposition all
have dimension 1.

It follows that each Wi is also an eigenspace for wN and T (p), p|N . Each Wi contains
(exactly) one cusp form f whose q-expansion is of the form q +

∑
n≥2 c(n)qn. For this form,

L(f, s) is equal to an Euler product, and Λ(f, s) satisfies a functional equation

Λ(f, s) = εΛ(f, 2− s)
where ε = ±1 is the eigenvalue of wN acting on Wi. If the c(n) ∈ Z, then Λ(f, s) is a
candidate for being the L-function of an elliptic curve E over Q.

Exercise 26.22. Let α, β, γ be integers, relatively prime in pairs, such that

α@ + β@ = γ@,

where 4 is a prime �= 2, 3, and consider the elliptic curve

E : Y 2Z = X(X − α@Z)(X − γ@Z).
(a) Show that E has discriminant ∆ = 16α2@β2@γ2@.

(b) Show that if p does not divide αβγ, then E has good reduction at p.

(c) Show that if p is an odd prime dividing αβγ, then E has at worst nodal reduction at
p.

(d) Show that (the minimal equation for) E has at worst nodal reduction at 2. [[After
possibly re-ordering α, β, γ, we may suppose, first that γ is even, and then that α@ ≡ 1
mod 4. Make the change of variables x = 4X, y = 8Y + 4X, and verify that the resulting
equation has integer coefficients.]]

(b),(c),(d) show that the conductor N of E divides
∏
p|αβγ p, and hence is much smaller

than ∆. This is enough to show that E doesn’t exist, but the enthusiasts may wish to verify
that N =

∏
p|αβγ p. [Hint: First show that if p doesn’t divide c4, then the equation is minimal

at p.]

27. Statement of the Main Theorems

Recall that to an elliptic curve E over Q, we have attached an L-series L(E, s) =
∑
ann

−s

that has coefficients an ∈ Z, can be expressed as an Euler product, and (conjecturally)
satisfies a functional equation (involving NE/Q, the conductor on E). Moreover, isogenous
elliptic curves have the same L-series. We therefore have a map

E �→ L(E, s) : {elliptic curves/Q}/∼ → {Dirichlet series}.
An important theorem of Faltings (1983) shows that the map is injective: two elliptic curves
are isogenous if they have the same L-function.

On the other hand, the theory of Hecke and Petersson, together with the theorem of Atkin
and Lehner, shows that the subspace Snew2 (Γ0(N)) ⊂ S2(Γ0(N)) of new forms decomposes
into a direct sum

Snew2 (Γ0(N)) = ⊕Wi
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of one-dimensional subspaces Wi that are simultaneous eigenspaces for all the T (n)’s with
gcd(n,N) = 1. Because they have dimension 1, each Wi is also an eigenspace for wN and for
the T (p) with p|N . An element of one of the subspaces Wi, i.e., a simultaneous eigenforms
in Snew2 (Γ0(N)), is traditionally called a newform, and I’ll adopt this terminology.

In each Wi there is exactly one form fi =
∑
c(n)qn with c(1) = 1 (said to be normalized).

Because fi is an eigenform for all the Hecke operators, it has an Euler product, and because
it is an eigenform for wN , it satisfies a functional equation. If the c(n)’s are30 in Z, then
L(fi, s) is a candidate for being the L-function of an elliptic curve over Q.

Conjecture 27.1. The following sets are equal:

{L(E, s) | E an elliptic curve over Q with conductor N}
{L(f, s) | f a normalized newform for Γ0(N), i.e., f = fi some i}.

The following theorem of Eichler and Shimura (and others) (1954/1958/...) shows that
the second set is contained in the first.

Theorem 27.2 (Eichler-Shimura). Let f =
∑
c(n)qn be a normalized newform for

Γ0(N). If all c(n) ∈ Z, then there exists an elliptic curve Ef of conductor N such that
L(Ef , s) = L(f, s).

The early forms of the theorem were less precise—in particular, they predate the work of
Atkin and Lehner in which newforms were defined.

The theorem of Eichler-Shimura has two parts: given f , construct the curve Ef (up to
isogeny); having constructed Ef , prove that L(Ef , s) = L(f, s). I’ll discuss the two parts in
Sections 28 and 29.

After the theorem of Eichler-Shimura, to prove Conjecture 27.1, it remains to show that
every elliptic curve E arises from a modular form f—such an elliptic curve is said to be
modular.

In a set of problems circulated (in Japanese) to the members of a conference in 1955,
Taniyama asked (in rather vague form) whether every elliptic curve was modular. In the
ensuing years, this question was apparently discussed by various people, including Shimura,
who however published nothing about it.

One can ask whether every Dirichlet L-series L(s) =
∑
ann

−s, an ∈ Z, equal to an Euler
product (of the same type as L(E, s)), and satisfying a functional equation (of the same type
as L(E, s)) must automatically be of the form L(f, s). This is not so, but Weil (1967) proved
something only a little weaker. Let χ : (Z/nZ)× → C×, gcd(n,N) = 1, be a homomorphism,
and extend χ to a map Z → C by setting χ(m) = χ(m mod n) if m and n are relatively
prime and = 0 otherwise. Define

Lχ(s) =
∑
χ(n)ann

−s, Λχ(s) =
(
m

2π

)−s
Γ(s)Lχ(s).

Weil showed that if all the functions Λχ(s) satisfy a functional equation relating Λχ(s) and
Λχ(2k − s) (and some other mild conditions), then L(s) = L(f, s) for some cusp form f of

30In the next section, we shall see that the c(n)’s automatically lie in some finite extension of Q, and that
if they lie in Q then they lie in Z
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weight 2k for Γ0(N). Weil also stated Conjecture 27.1 (as an exercise!)—this was its first
appearance in print.

Weil’s result showed that if L(E, s) and its twists satisfy a functional equation of the correct
form, then E is modular. Since the Hasse-Weil conjecture was widely believed, Weil’s paper
(for the first time) gave a strong reason for believing Conjecture 27.1, i.e., it made (27.1)
into a conjecture rather than a question. Also, for the first time it related the level N of f
to the conductor of E, and so made it possible to test the conjecture numerically: list all
the f ’s for Γ0(N), list all isogeny classes of elliptic curves over Q with conductor N , and see
whether they match. A small industry grew up to do just that.

For several years, the conjecture was referred to as Weil’s conjecture. Then, after
Taniyama’s question was rediscovered, it was called the Taniyama-Weil conjecture. Finally,
after Lang adopted it as one of his pet projects31, it became unsafe to call it anything other
than the Shimura-Taniyama conjecture—see Lang’s scurrilous article in the Notices of the
AMS, November 1995, pp 1301–1307.

In a lecture in 1985, Frey suggested that the curve in Exercise 26.22, defined by a coun-
terexample to Fermats’ Last Theorem, should not be modular. This encouraged Serre to
rethink some old conjectures of his, and formulate two conjectures, one of which implies that
Frey’s curve is indeed not modular. In 1986, Ribet proved sufficient of Serre’s conjectures to
be able to show that Frey’s curve can’t be modular. I’ll discuss this work in Section 31.

Thus, at this stage (1986) it was known that Conjecture 27.1 for semistable elliptic curves
over Q implies Fermat’s Last Theorem, which inspired Wiles to attempt to prove Conjecture
27.1. After a premature announcement in 1993, Wiles proved in 1994 (with the help of R.
Taylor) that all semistable elliptic curves over Q are modular. Recall that semistable just
means that the curve doesn’t have cuspidal reduction at any prime. Diamond improved the
theorem so that it now says that an elliptic curve E over Q is modular provided it doesn’t
have additive reduction at 3 or 5. In other words, the image of the map

f �→ Ef : {f} → {E over Q}/∼
contains (at least) all E’s with at worst nodal reduction at 3 and 5. Needless to say, efforts
are being made to remove this last condition. I’ll discuss the strategy of Wiles’s proof in
Section 30.

28. How to get an Elliptic Curve from a Cusp Form

Not long after Newton and Leibniz invented calculus, mathematicians discovered that they
couldn’t evaluate integrals of the form ∫

dx√
f(x)

where f(x) ∈ R[x] is a cubic polynomial without a repeated factor. In fact, such an integral
can’t be evaluated in terms of elementary functions. Thus, they were forced to treat them

31To the great benefit of the Xerox Co., as Weil put it—I once made some of the points in the above
paragraph to Lang and received a 40 page response.
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as new functions and to study their properties. For example, Euler showed that∫ t1

a

dx√
f(x)

+
∫ t2

a

dx√
f(x)

=
∫ t3

a

dx√
f(x)

where t3 is a rational function of t1, t2. The explanation for this lies with elliptic curves.

Consider the elliptic curve Y 2 = f(X) over R, and the differential one-form ω = 1
y
dx+0dy

on R2. According to Math 215, to integrate ω over a segment of the elliptic curve, we should
parametrize the curve. We assume that the segment γ(a, t) of the elliptic curve over [a, t]
can be smoothly parametrized by x. Thus the segment is

x �→ (x,
√
f(x)), x ∈ [a, t].

Then, again according to Math 215,∫
γ(a,t)

dx

y
=
∫ t

a

dx√
f(x)

.

Thus, the elliptic integral can be regarded as an integral over a segment of an elliptic curve.

A key point, which we’ll discuss later, is that the restriction of ω to E is translation
invariant, i.e., if tQ denotes the map P �→ P +Q on E, then t∗Qω = ω (on E). Hence∫

γ(a,t)
ω =

∫
γ(a+x(Q),t+x(Q))

ω

for any Q ∈ E(R) (here x(Q) is the x-coordinate of Q). Now Euler’s theorem becomes the
statement ∫

γ(a,t1)
ω +

∫
γ(a,t2)

=
∫
γ(a,t1)

ω +
∫
γ(t1,t3)

ω =
∫
γ(a,t3)

ω

where t3 is determined by

(t2,
√
f(t2))− (a,

√
f(a)) + (t1,

√
f(t1)) = (t3,

√
f(t3))

(difference and sum for the group structure on E(R)).

Thus the study of elliptic integrals leads to the study of elliptic curves. Jacobi and Abel
showed that the study of more complicated integrals leads to other interesting varieties.

Differentials on Riemann surfaces. A differential one-form on an open subset of C is
simply an expression ω = fdz, with f a meromorphic function. Given a smooth curve γ

t �→ z(t) : [a, b] → C, [a, b] = {t ∈ R | a ≤ t ≤ b},
we can form the integral ∫

γ
ω =

∫ b

a
f(z(t)) · z′(t) · dt ∈ C.

Now consider a compact Riemann surface X. If ω is a differential one-form on X and
(Ui, zi) is a coordinate neighbourhood for X, then ω|Ui = fi(zi)dzi. If (Uj, zj) is a second
coordinate neighbourhood, so that zj = w(zi) on Ui ∩ Uj , then

fi(zi)dzi = fj(w(zi))w
′(zi)dzi

on Ui ∩ Uj. Thus, to give a differential one-form on X is to give differential one-forms fidzi
on each Ui, satisfying the above equation on the overlaps. For any (real) curve γ : I → X
and differential one-form ω on X, the integral

∫
γ ω makes sense.
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A differential one-form is holomorphic if it is represented on the coordinated neighbour-
hoods by forms fdz with f holomorphic.

It is an important fact (already noted) that the holomorphic differential one-forms on a
Riemann surface of genus g form a complex vector space Ω1(X) of dimension g.

For example, the Riemann sphere has genus 0 and so should have no nonzero holomorphic
differential one-forms. Note that dz is holomorphic on C = S \ {north pole}, but that
z = 1/z′ on S \ {poles}, and so dz = − 1

z′2dz
′, which has a pole at the north pole. Hence dz

does not extend to a holomorphic differential one-form on the whole of S.

An elliptic curve has genus 1, and so the holomorphic differential one-forms on it form a
vector space of dimension 1. It is generated by ω = dx

2y
(more accurately, the restriction of

1
2y
dx+ 0dy to E(C) ⊂ C2). Here I’m assuming that E has equation

Y 2Z = X3 + aXZ2 + bZ3, ∆ �= 0.

Note that, on Eaff,
2ydy = (3x2 + a)dx,

and so
dx

2y
=

dy

3x2 + a

where both are defined. Thus it is holomorphic on Eaff, and one can check that it also
holomorphic at the point at infinity.

For any Q ∈ E(C), t∗Qω is also holomorphic, and so t∗Qω = cω for some c ∈ C. Now
Q �→ c : E(C) → C is a holomorphic function on C, and all such functions are constant (see
10.3). Since the function takes the value 1 when Q = 0, it is 1 for all Q, and so ω is invariant
under translation. Alternatively, one can simply note that the inverse image of ω under the
map

(x, y) = (℘(z), ℘′(z)), C \ Λ → Eaff(C)

is
d℘(z)

2℘′(z)
=
dz

2
,

which is clearly translation invariant on C—d(z + c) = dz.

The Jacobian variety of a Riemann surface. Consider an elliptic curve over E and a
nonzero holomorphic differential one-form ω. We choose a point P0 ∈ E(C) and try to define
a map

P �→
∫ P

P0

ω : E(C) → C.

This is not well-defined because the value of the integral depends on the path we choose
from P0 to P—nonhomotopic paths may give different answers. However, if we choose a
basis {γ1, γ2} for H1(E(C),Z)(= π1(E(C), P0)), then the integral is well-defined modulo the
lattice Λ in C generated by ∫

γ1
ω,

∫
γ2
ω.

In this way, we obtain an isomorphism

P �→
∫ P

P0

ω : E(C) → C/Λ.

Note that this construction is inverse to that in Section 10.
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Jacobi and Abel made a similar construction for any compact Riemann surfaceX. Suppose
X has genus g, and let ω1, . . . , ωg be a basis for the vector space Ω

1(X) of holomorphic one-
forms on X. Choose a point P0 ∈ X. Then there is a smallest lattice Λ in Cg such that the
map

P �→
(∫ P

P0

ω1, . . . ,
∫ P

P0

ωg

)
: X → Cg/Λ

is well-defined. By a lattice in Cg, I mean the free Z-submodule of rank 2g generated by a
basis for Cg regarded as a real vector space (strictly, this is a full lattice). The quotient Cg/Λ
is a complex manifold, called the Jacobian variety Jac(X) of X, which can be considered to
be a higher-dimensional analogue of C/Λ. Note that it is a commutative group.

We can make the definition of Jac(X) more canonical. Let Ω1(X)∨ be the dual of Ω1(X)
as a complex vector space. For any γ ∈ H1(X,Z),

ω �→
∫
γ
ω

is an element of Ω1(X)∨, and in this way we obtain an injective homomorphism

H1(X,Z) ↪→ Ω1(X)∨,

which (one can prove) identifies H1(X,Z) with a lattice in Ω1(X)∨. Define

Jac(X) = Ω1(X)∨/H1(X,Z).

When we fix a P0 ∈ X, any P ∈ X defines an element

ω �→
∫ P

P0

ω mod H1(X,Z)

of Jac(X), and so we get a map X → Jac(X). The choice of a different P0 gives a map that
differs from the first only by a translation.

Construction of the elliptic curve over C. We apply the above theory to the Riemann
surface X0(N). Let π be the map π : H → X0(N) (not quite onto). For any ω ∈ Ω1(X),
π∗ω = fdz where f ∈ S2(X0(N)), and the map ω �→ f is a bijection

Ω1(X) → S2(X0(N))
(see 25.3). The Hecke operator T (n) acts on S2(X0(N)), and hence on Ω1(X) and its dual.

Proposition 28.1. There is a canonical action of T (n) on H1(X0(N),Z), which is com-
patible with the map H1(X0(N),Z) → Ω1(X0(N))

∨. In other words, the action of T (n)
on Ω1(X)∨ stabilizes its sublattice H1(X0(N),Z), and therefore induces an action on the
quotient Jac(X0(N)).

Proof. One can give an explicit set of generators for H1(X0(N),Z), explicitly describe an
action of T (n) on them, and then explicitly verify that this action is compatible with the
map H1(X0(N),Z) → Ω1(X0(N))

∨. Alternatively, as we discuss in the next section, there
are more geometric reasons why the T (n) should act on Jac(X).

Remark 28.2. From the action of T (n) on H1(X,Z) ≈ Z2g we get a characteristic poly-
nomial P (Y ) ∈ Z[Y ] of degree 2g. What is its relation to the characteristic polynomial
Q(Y ) ∈ C[Y ] of T (n) acting on Ω1(X)∨ ≈ Cg? The obvious guess is that P (Y ) = Q(Y )Q(Y ).
The proof that this is so is an exercise in linear algebra. See the next section.
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Now let f =
∑
c(n)qn be a normalized newform for Γ0(N) with c(n) ∈ Z. The map

α �→ α(f) : Ω1(X0(N))
∨ → C

identifies C with the largest quotient of Ω1(X)∨ on which each T (n) acts as multiplication
by c(n). The image of H1(X0(N),Z) is a lattice Λf , and we set Ef = C/Λf—it is an elliptic
curve over C. Note that we have constructed maps

X0(N) → Jac(X0(N)) → Ef .

The inverse image of the differential on Ef represented by dz is the differential on X0(N)
represented by fdz.

Construction of the elliptic curve over Q. We briefly explain why the above construc-
tion in fact gives an elliptic curve over Q. There will be a few more details in the next
section.

For a compact Riemann surface X, we defined

Jac(X) = Ω1(X)∨/H1(X,Z) ≈ Cg/Λ, g = genusX.

This is a complex manifold, but as in the case of an elliptic curve, it is possible to construct
enough functions on it to embed it into projective space, and so realize it as a projective
algebraic variety.

Now suppose X is a nonsingular projective curve over an field k. Weil showed (as part of
the work mentioned on p102) that it is possible to attach to X a projective algebraic variety
Jac(X) over k, which, in the case k = C becomes the variety defined in the last paragraph.
There is again a map X → Jac(X), well-defined up to translation by the choice of a point
P0 ∈ X(k). The variety Jac(X) is an abelian variety, i.e., not only is it projective, but it
also has a group structure. (An abelian variety of dimension 1 is an elliptic curve.)

In particular, there is such a variety attached to the curve X0(N) defined in Section
24. Moreover (see the next section), the Hecke operators T (n) define endomorphisms of
Jac(X0(N)). Because it has an abelian group structure, any integer m defines an endomor-
phism of Jac(X0(N)), and we define Ef to be the largest “quotient” of Jac(X0(N)) on which
T (n) and c(n) agree for all n relatively prime to N . One can prove that this operation of
“passing to the quotient” commutes with change of the ground field, and so in this way we
obtain an elliptic curve over Q that becomes equal over C to the curve defined in the last
subsection. On composing X0(N) → Jac(X0(N)) with Jac(X0(N)) → Ef we obtain a map
X0(N) → Ef . In summary:

Theorem 28.3. Let f =
∑
c(n)qn be a newform in S2(Γ0(N)), normalized to have c(1) = 1,

and assume that all c(n) ∈ Z. Then there exists an elliptic curve Ef and a map α : X0(N) →
Ef with the following properties:

(a) α factors uniquely through Jac(X0(N)),

X0(N) → Jac(X0(N)) → Ef ,

and the second map realizes Ef as the largest quotient of Jac(X0(N)) on which the
endomorphisms T (n) and c(n) of Jac(X0(N)) agree.

(b) The inverse image of an invariant differential ω on Ef under H → X0(N) → Ef is a
nonzero rational multiple of fdz.
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29. Why the L-Series of E Agrees with the L-Series of f

In this section we sketch a proof of the identity of Eichler and Shimura relating the Hecke
correspondence T (p) to the Frobenius map, and hence the L-series of Ef to that of f .

The ring of correspondences of a curve. Let X and X ′ be projective nonsingular curves
over a field k which, for simplicity, we take to be algebraically closed.

A correspondence T between X and X ′, written T : X 3 X ′, is a pair of finite surjective
regular maps

X
α←− Y β−→ X ′.

It can be thought of as a many-valued map X → X ′ sending a point P ∈ X(k) to the set
{β(Qi)} where the Qi run through the elements of α−1(P ) (the Qi need not be distinct).
Better, define Div(X) to be the free abelian group on the set of points of X; thus an element
of Div(X) is a finite formal sum

D =
∑
nPP, nP ∈ Z, P ∈ X(k).

A correspondence T then defines a map

Div(X) → Div(X ′), P �→∑
β(Qi).

(notations as above). This map multiplies the degree of a divisor by deg(α). It therefore sends
the divisors of degree zero on X into the divisors of degree zero on X ′, and one can show that
it sends principal divisors to principal divisors. Hence it defines a map T : J(X) → J(X ′)
where

J(X) =df Div
0(X)/{principal divisors}.

We define the ring of correspondences A(X) on X to be the subring of End(J(X)) generated
by the maps defined by correspondences.

If T is the correspondence

X
β←− Y α−→ X,

then the transpose T tr of T is the correspondence

X
α←− Y β−→ X.

A morphism α : X → X ′ can be thought of as a correspondence

X ← Γ → X ′

where Γ ⊂ X ×X ′ is the graph of α and the maps are the projections. The transpose of a
morphism α is the many valued map P �→ α−1(P ).

Remark 29.1. Let U and U ′ be the curves obtained from X and X ′ by removing a finite
number of points. Then, it follows from the theory of algebraic curves, that a regular map
α : U → U ′ extends uniquely to a regular map ᾱ : X → X ′: take ᾱ to be the regular map
whose graph is the Zariski closure of the graph of α. On applying this remark twice, we see
that a correspondence U 3 U ′ extends uniquely to a correspondence X 3 X ′.

Remark 29.2. Let
X

α←− Y β−→ X ′.
be a correspondence T : X 3 X ′. For any regular function f on X ′, we define T (f) to be
the regular function P �→ ∑

f(βQi) on X (notation as above). Similarly, T will define a
homomorphism Ω1(X ′) → Ω1(X).
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The Hecke correspondence. For p � N , the Hecke correspondence T (p) : Y0(N) → Y0(N)
is defined to be

Y0(N)
α←− Y0(pN) β−→ Y0(N)

where α is the obvious projection map and β is the map induced by z �→ pz : H → H.

On points, it has the following description. Recall that a point of Y0(pN) is represented
by a pair (E, S) where E is an elliptic curve and S is a cyclic subgroup of E of order pN .
Because p � N , any such subgroup decomposes uniquely into subgroups of order N and p,
S = SN × Sp. The map α sends the point represented by (E, S) to the point represented by
(E, SN), and β sends it to the point represented by (E/Sp, S/Sp). Since Ep has p+ 1 cyclic
subgroups, the correspondence is 1 : p + 1.

The unique extension of T (p) to a correspondence X0(N) → X0(N) acts on Ω1(X0(N)) =
S2(X0(N)) as the Hecke correspondence defined in Section 26. This description of T (p),
p � N , makes sense, and is defined on, the curve X0(N) over Q. Similar remarks apply32 to
the T (p) for p|N .

The Frobenius map. Let C be a curve defined over the algebraic closure F of Fp. If C is
defined by equations ∑

ai0i1···X
i0
0 X

i1
1 · · · = 0,

then C(p) is defined by equations ∑
api0i1···X

i0
0 X

i1
1 · · · = 0,

and the Frobenius map ϕp : C → C(p) sends the point (b0 : b1 : b2 : . . . ) to (bp0 : b
p
1 : b

p
2 : . . . ).

If C is defined over Fp, then C = C(p) and ϕp is the Frobenious map defined earlier.

Recall that a nonconstant morphism α : C → C ′ of curves defines an inclusion α∗ :
k(C ′) ↪→ k(C) of function fields, and that the degree of α is defined to be [k(C) : α∗k(C ′)].
The map α is said to be separable or purely inseparable according as k(C) is a separable of
purely inseparable extension of α∗k(C ′). If the separable degree of k(C) over α∗k(C ′) is m,
then the map C(kal) → C ′(kal) is m : 1, except over the finite set where it is ramified.

Proposition 29.3. The Frobenius map ϕp : C → C(p) is purely inseparable of degree p, and
any purely inseparable map ϕ : C → C ′ of degree p (of complete nonsingular curves) factors
as

C
ϕp−→ C(p)

≈−→ C ′.

Proof. For C = P1, this is obvious, and the general case follows because F(C) is a separable
extension of F(T ). See [S1, II.2.12] for the details.

Brief review of the points of order p on elliptic curves. Let E be an elliptic curve
over an algebraically closed field k. The map p : E → E (multiplication by p) is of degree
p2. If k has characteristic zero, then the map is separable, which implies that its kernel has
order p2. If k has characteristic p, the map is never separable: either it is purely inseparable
(and so E has no points of order p) or its separable and inseparable degrees are p (and so E
has p points of order dividing p). The first case occurs for only finitely many values of j.

32These T (p)’s are sometimes denoted U(p).
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The Eichler-Shimura relation. The curve X0(N) and the Hecke correspondence T (p)
are defined over Q. For almost all primes p � N , X0(N) will reduce to a nonsingular curve

X̃0(N).
33 For such a prime p, the correspondence T (p) defines a correspondence T̃ (p) on

X̃0(N).

Theorem 29.4. For a prime p where X0(N) has good reduction,

T̃ (p) = ϕp + ϕ
tr
p .

(Equality in the ring A(X̃0(N)) of correspondences on X̃0(N) over the algebraic closure F
of Fp.)

Proof. We sketch a proof that they agree as many-valued maps on an open subset of X̃0(N).

Over Qal
p we have the following description of T (p) (see above): a point P on Y0(N) is

represented by a homomorphism of elliptic curves α : E → E ′ with cyclic kernel of order
N ; let S0, . . . , Sp be the subgroups of order p in E; then Tp(P ) = {Q0, . . . , Qp} where Qi is
represented by E/Si → E ′/α(Si).

Consider a point P̃ on X̃0(N) with coordinates in F—by Hensel’s lemma it will lift to a

point on X0(N) with coordinates in Qal
p . Ignoring a finite number of points of X̃0(N), we

can suppose P̃ ∈ Ỹ0(N) and hence is represented by a map α̃ : Ẽ → Ẽ ′ where α : E → E ′

has cyclic kernel of order N . By ignoring a further finite number of points, we may suppose
that Ẽ has p points of order dividing p.

Let α : E → E ′ be a lifting of α̃ to Qal
p . The reduction map Ep(Q

al
p ) → Ẽp(F

al
p ) has a

kernel of order p. Number the subgroups of order p in E so that S0 is the kernel of this map.
Then each Si, i �= 0, maps to a subgroup of order p in Ẽ.

The map p : Ẽ → Ẽ has factorizations

Ẽ
ϕ−→ Ẽ/Si

ψ−→ Ẽ, i = 0, 1, . . . , p.

When i = 0, ϕ is a purely inseparable map of degree p (it is the reduction of the map
E → E/S0—it therefore has degree p and has zero kernel), and so ψ must be separable of

degree p (we are assuming Ẽ has p points of order dividing p). Proposition 29.3 shows that

there is an isomorphism Ẽ(p) → Ẽ/S0. Similarly Ẽ ′(p) ≈ Ẽ ′/S0. Therefore Q0 is represented
by Ẽ(p) → Ẽ ′(p), which also represents ϕp(P ).

When i �= 0, ϕ is separable (its kernel is the reduction of Si), and so ψ is purely inseparable.

Therefore Ẽ ≈ Ẽ(p)i , and similarly Ẽ ′ ≈ Ẽ ′
i
(p), where Ẽi/Ẽ/Si and Ẽ

′
i = Ẽ

′/Si. It follows
that {Q1, . . . , Qp} = ϕ−1

p (P ) = ϕtrp (P ).

The zeta function of an elliptic curve revisited. We begin with an elementary result
from linear algebra.

Proposition 29.5. Let Λ be a free Z-module of finite rank, and let α : Λ → Λ be a Z-linear
map with nonzero determinant. Then the kernel of the map

α̃ : (Λ⊗ Q)/Λ → (Λ⊗ Q)/Λ

defined by α has order | det(α)|.
33In fact, it is known that X0(N) has good reduction for all primes p � N , but this is hard to prove. It is

easy to see that X0(N) does not have good reduction at primes dividing N .
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Proof. Consider the commutative diagram:

0 −−−→ Λ −−−→ Λ⊗ Q −−−→ (Λ⊗ Q)/Λ −−−→ 0$α $α⊗1 $α̃
0 −−−→ Λ −−−→ Λ⊗ Q −−−→ (Λ⊗ Q)/Λ −−−→ 0.

Because det(α) �= 0, the middle vertical map is an isomorphism. Therefore the snake lemma
gives an isomorphism

Ker(α̃) → Coker(α),

and it is easy to see that Coker(α) is finite with order equal to | det(α)|.
We apply this to an elliptic curve E over C. Then E(C) = C/Λ for some lattice Λ, and

E(C)tors = QΛ/Λ where

QΛ = {rλ | r ∈ Q, λ ∈ Λ} = {z ∈ C | mz ∈ Λ some m ∈ Z} = Q ⊗ Λ.

The degree of an endomorphism α of E is the order its kernel in E(C)tors, and so we find
that deg(α) is the determinant of α acting on Λ. We shall need a generalization of this to
other fields.

Let E be an elliptic curve over an algebraically closed field k, and let 4 be a prime not
equal to the characteristic of k. Then E(k)@n ≈ (Z/4nZ)2. The Tate module T@E of E is
defined to be

T@E = lim←−E(k)@n .
Thus, it is a free Z@-module of rank 2 such that T@E/4

nT@E = E(k)@n for all n. For example,
if k = C and E(C) = C/Λ, then

E(C)@n =
1

4n
Λ/Λ = Λ/4nΛ = Λ⊗ (Z/4nZ),

and so

T@E = Λ⊗ Z@.

More canonically,

T@E = H1(E,Z)⊗ Z@.

Proposition 29.6. Let E and 4 be as above. For an endomorphism α of E,

det(α|T@E) = degα.

Proof. When k = C, then the statement follows from the above discussion. For k of charac-
teristic zero, it follows from the case k = C. For k of characteristic p �= 0, see [S1].

When Λ is a free module over some ring R and α : Λ → Λ is R-linear, Tr(α|Λ) denotes
the trace (sum of diagonal terms) of the matrix of α relative to some basis for Λ—it is
independent of the choice of basis.

Corollary 29.7. Let E be an elliptic curve over Fp. Then the trace of

Tr(ϕp|T@E) = ap =df p+ 1−Np.
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Proof. For any 2 × 2 matrix A, det(A − I2) = detA − TrA + 1. On applying this to the
matrix of ϕp acting on T@E, and using the proposition, we find that

deg(ϕp − 1) = deg(ϕp)− Tr(ϕp|T@E) + 1.

As we noted in Section 19, deg(ϕp − 1) = Np and deg(ϕp) = p.

As we noted above, a correspondence T : X 3 X defines a map J(X) → J(X). When E
is an elliptic curve, E(k) = J(E), and so T acts on E(k), and hence also on T@(E).

Corollary 29.8. Let E be an elliptic curve over Fp. Then

Tr(ϕtrp |T@E) = Tr(ϕp|T@E).
Proof. Because ϕp has degree p, ϕp ◦ϕtrp = p. Therefore, if α, β are the eigenvalues of ϕp, so
that in particular αβ = degϕ = p, then

Tr(ϕtrp |T@E) = p/α + p/β = β + α.

The action of the Hecke operators on H1(E,Z). Again, we first need an elementary
result from linear algebra.

Let V be a real vector space and suppose that we are given the structure of a complex
vector space on V . This means that we are given an R-linear map J : V → V such that
J2 = −1. The map J extends by linearity to V ⊗R C, and V ⊗R C splits as a direct sum

V ⊗R C = V+ ⊕ V−,

with V ± the ±1 eigenspaces of J .

Proposition 29.9. (a) The map

V
v →v⊗1−−−−→ V ⊗R C

project−−−→ V+

is an isomorphism of complex vector spaces.

(b) Denote by w �→ w̄ the map v ⊗ z �→ v ⊗ z̄ : V ⊗R C → V ⊗R C; this is an R-linear
involution of V ⊗R C interchanging V + and V −.

Proof. Easy exercise.

Corollary 29.10. Let α be an endomorphism of V which is C-linear. Write A for the
matrix of α regarded as an R-linear endomorphism of V , and A1 for the matrix of α as a
C-linear endomorphism of V. Then

A ∼ A1 ⊕ Ā1.

(By this I mean that the matrix A is equivalent to the matrix

(
A1 0
0 Ā1

)
.)

Proof. Follows immediately from the above Proposition. [In the case that V has dimension
2, we can identify V (as a real or complex vector space) with C. For the map “multiplication
by α = a+ ib” the statement becomes,(

a −b
b a

)
∼
(
a + ib 0
0 a− ib

)
,
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which is obviously true because the two matrices are semisimple and have the same trace
and determinant.]

Corollary 29.11. For any p � N ,

Tr(T (p) | H1(X0(N),Z)) = Tr(T (p) | Ω1(X0(N))) + Tr(T (p) | Ω1(X0(N))).

Proof. To say that H1(X0(N),Z) is a lattice in Ω1(X0(N))
∨ means that

H1(X0(N),Z)⊗Z R = Ω1(X0(N))
∨

(as real vector spaces). Clearly

Tr(T (p) | H1(X0(N),Z)) = Tr(T (p) | H1(X0(N),Z)⊗Z R),

and so we can apply the preceding corollary.

The proof that c(p) = ap.

Theorem 29.12. Consider an f =
∑
c(n)qn and a map X0(N) → E, as in (28.3). For all

p � N ,

c(p) = ap =df p+ 1−Np(E).

Proof. We assume first that X0(N) has genus 1, and so we may take the map to be an
isomorphism: E = X0(N). Let p be a prime not dividing N . Then E has good reduction at

p, and for any 4 �= p, the reduction map T@E → T@Ẽ is an isomorphism. The Eichler-Shimura
relation states that

T̃ (p) = ϕp + ϕ
tr
p .

On taking traces on T@Ẽ, we find (using 29.7, 29.8, 29.11) that

2c(p) = ap + ap.

The proof of the general case is very similar except that, at various places in the argument,
an elliptic curve has to be replace either by a curve or the Jacobian variety of a curve.
Ultimately, one uses that T@E is the largest quotient of T@Jac(X0(N)) on which T (p) acts
as multiplication by c(p) for all p � N (perhaps after tensoring with Q@).

Aside 29.13. Let X be a Riemann surface. The map [P ]− [P0] �→ ∫ P
P0
ω extends by linearity

to map Div0(X) → Jac(X). The famous theorem of Abel-Jacobi says that this induces an
isomorphism J(X) → Jac(X). The Jacobian variety Jac(X) of a curve X over a field k
(constructed in general by Weil) has the property that Jac(X)(k) = J(X), at least when
J(k) �= ∅. For more on Jacobian and Abelian varieties, see my articles in “Arithmetic
Geometry” (Eds. Cornell, G., and Silverman, J.).

Reference: The best reference for the material in Sections 23–29 is Knapp’s book.
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30. Wiles’s Proof

Somebody with an average or even good
mathematical background might feel that all
he ends up with after reading [. . . ]’s paper
is what he suspected before anyway: The
proof of Fermat’s Last Theorem is indeed
very complicated. (M. Flach)

In this section, I explain the strategy of Wiles’s proof of the Taniyama conjecture for
semistable elliptic curves over Q (i.e., curves with at worst nodal reduction).

Recall, that if S denotes the sphere, then π =df π1(S \ {P1, . . . , Ps}, O) is generated by
loops γ1, . . . , γs around each of the points P1, . . . , Ps, and that π classifies the coverings of
S unramified except over P1, . . . , Ps.

Something similar is true for Q. Let K be a finite extension of Q, and let OK be the ring
of integers in K. In OK , the ideal pOK factors into a product of powers of prime ideals:
pOK =

∏
pep . The prime p is said to be unramified in K if no ep > 1.

Now assume K/Q is Galois with Galois group G. Let p be unramified in K and choose a
prime ideal p dividing pOK (so that p ∩ Z = (p)). Let G(p) be the subgroup of G of σ such
that σp = p. One shows that the action of G(p) on OK/p = k(p) defines an isomorphism
G(p) → Gal(k(p)/Fp). The element Fp ∈ G(p) ⊂ G mapping to the Frobenius element
x �→ xp in Gal(k(p)/Fp) is called the Frobenius element at p. Thus Fp ∈ G is characterised
by the conditions: {

Fpp = p,
Fpx ≡ xp mod p, for all x ∈ OK .

If p′ also divides pOK , then there exists a σ ∈ G such that σp = p′, and so Fp′ = σFpσ
−1.

Therefore, the conjugacy class of Fp depends on p—I’ll often write Fp for any one of the Fp.
It is known that the Fp (varying p) generate G.

The above discussion extends to infinite extensions. Fix a finite nonempty set S of prime
numbers, and let KS be the union of all K ⊂ C that are of finite degree over Q and
unramified outside S—it is an infinite Galois extension of Q. For each p ∈ S, there is an
element Fp ∈ Gal(KS/Q), well-defined up to conjugation, called the Frobenius element at p.

Proposition 30.1. Let E be an elliptic curve over Q. Let 4 be a prime, and let

S = {p | E has bad reduction at p} ∪ {4}.
Then all points of order 4n on E have coordinates in KS , i.e., E(KS)@n = E(Qal)@n for all n.

Proof. See [S1, VII.4.1].

Example 30.2. The smallest field containing the coordinates of the points of order 2 on the
curve E : Y 2Z = X3+ aXZ2+ bZ3 is the splitting field of X3+ aX + b. Those who know a
little algebraic number theory will recognize that this field is unramified at the primes not
dividing the discriminant ∆ of X3+ aX + b, i.e., at the primes where E has good reduction
(ignoring 2)

The Galois group GS acts on E(KS)@n for all n. Recall from p156 that T@E is the free
Z@-module of rank 2 such that

T@E/4
nT@E = E(KS)@n = E(Qal)@n



154 J.S. MILNE

for all n. The action of GS on the quotients defines a continuous action of GS on T@E, i.e.,
a continuous homomorphism (also referred to as a representation)

ρ@ : GS → Aut(T@E) ≈ GL2(Z@).

Proposition 30.3. Let E, 4, S be as in the previous proposition. For all p /∈ S,
Tr(ρ@(Fp) | T@E) = ap =df p+ 1−Np(E).

Proof. Because p /∈ S, E has good reduction to an elliptic curve Ep over Fp, and the re-
duction map P �→ P̄ induces an isomorphism T@E → T@Ep. [For an elliptic curve E over a
nonalgebraically closed field k, T@E = lim←−E(kal)@n .] By definition Fp maps to the Frobenius
element in Gal(F/Fp), and the two have the same action on T@E. Therefore the proposition
follows from (29.7).

Definition 30.4. A continuous homomorphism ρ : GS → GL2(Z@) is said to be modular if
Tr(ρ(Fp)) ∈ Z for all p /∈ S and there exists a cusp form f =

∑
c(n)qn in S2k(Γ0(N)) for

some k and N such that

Tr(ρ(Fp)) = c(p)

for all p /∈ S.
Thus, in order to prove that E is modular one must prove that ρ@ : GS → Aut(T@E) is

modular for some 4. Note that then ρ@ will be modular for all 4.

Similarly, one says that a continuous homomorphism ρ : GS → GL2(F@) is modular if
there exists a cusp form f =

∑
c(n)qn in S2k(Γ0(N)) for some k and N such that

Tr(ρ(Fp)) ≡ c(p) mod 4

for all p /∈ S. There is the following remarkable conjecture.

Conjecture 30.5 (Serre). Every odd irreducible representation ρ : GS → GL2(F@) is mod-
ular.

“Odd” means that det ρ(c) = −1, where c is complex conjugation. “Irreducible” means
that there is no one-dimensional subspace of F2@ stable under the action of GS . The Weil
pairing [S1,III.8] shows that

∧2E@ = µ@ (the group of 4-roots of 1 in Qal). Since cζ = ζ−1, this
shows that the representation of GS on E@ is odd. It need not be irreducible, for example, if
E has a point of order 4 with coordinates in Q.

As we shall discuss in the next section, Serre in fact gave a recipe for defining the level N
and weight 2k of modular form.

There is much numerical evidence supporting Serre’s conjecture, but few theorems. The
most important of these is the following.

Theorem 30.6 (Langlands, Tunnell). If ρ : GS → GL2(F3) is odd and irreducible, then
it is modular.

Note that GL2(F3) has order 8 · 6 = 48. The action of PGL2(F3) on the projective plane

over F3 identifies it with S4, and so GL2(F3) is a double cover S̃4 of S4.

The theorem of Langlands and Tunnell in fact concerned representations GS → GL2(C).
In the last century, Klein classified the finite subgroups of GL2(C): their images in PGL2(C)
are cyclic, dihedral, A4, S4, or A5. Langlands constructed candidates for the modular forms,
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and verified they had the correct property in the A4 case. Tunnell verified this in the S4
case, and, since GL2(F3) embeds into GL2(C), this verifies Serre’s conjecture for F3.

Fix a representation ρ0 : GS → GL2(F@). In future, R will always denote a complete local
Noetherian ring with residue field F@, for example, F@, Z@, or Z@[[X]]. Two homomorphism
ρ1, ρ2 : GS → GL2(R) will be said to be strictly equivalent if

ρ1 =Mρ2M
−1, M ∈ Ker(GL2(R) → GL2(k)).

A deformation of ρ0 is a strict equivalence class of homomorphisms ρ : GS → GL2(R) whose
composite with GL2(R) → GL2(Fp) is ρ0.

Let ∗ be a set of conditions on representations ρ : GS → GL(R). Mazur showed, for
certain ∗, that there is a universal ∗-deformation of ρ0, i.e., a ring R̃ and a deformation
ρ̃ : GS → GL2(R̃) satisfying ∗ such that for any other deformation ρ : GS → GL2(R), there

is a unique homomorphism R̃→ R such that the composite GS
ρ̃−→ GL2(R̃) −→ GL2(R) is ρ.

Now assume ρ0 is modular. Work of Hida and others show that, for certain ∗, there exists
a deformation ρT : GS → GL2(T) that is universal for modular deformations satisfying ∗.
Because ρ̃ is universal for all ∗-representations, there exists a unique homomorphism δ :

R̃→ T carrying ρ̃ into ρT. It is onto, and it is injective if and only if every ∗-representation
is modular.

It is now possible to explain Wiles’s strategy. First, state conditions ∗ as strong as possible
but which are satisfied by the representation of GS on T@E for E a semistable elliptic curve
over Q. Fixing a modular ρ0 we get a homomorphism δ : R̃→ T.

Theorem 30.7 (Wiles). The homomorphism δ : R̃→ T is an isomorphism (and so every
∗-representation lifting ρ0 is modular).

Now let E be an elliptic curve over Q, and assume initially that the representation of
GS on E3 is irreducible. By the Theorem of Langlands and Tunnell, the representation
ρ0 : GS → Aut(E(KS)3) is modular, and by Wiles’s theorem, every ∗-representation is
modular. In particular, ρ3 : GS → Aut(T3E) is modular, which implies that E is modular.

What if the representation of GS on E(KS)3 is not irreducible, for example, if E(Q)
contains a point of order three. It is not hard to show that the representations of GS on
E(KS)3 and E(KS)5 can’t both be reducible, because otherwise either E or a curve isogenous
to E will have rational points of order 3 and 5, hence a point 15, which is impossible.
Unfortunately, there is no Langlands-Tunnell theorem for 5. Instead, Wiles uses the following
elegant argument.

He shows that there is a semistable elliptic curve E ′ over Q such that:

(a) E ′(KS)3 is irreducible;
(b) E ′(KS)5 ≈ E(KS)5 as GS-modules.

Because of (a), the preceding argument applies to E ′ and shows it to be modular. Hence the
representation ρ5 : GS → Aut(T5E

′) is modular, and so also is ρ0 : GS → Aut(E ′(KS)5) ≈
Aut(E(KS)5). Now, Wiles can apply his original argument with 3 replaced by 5.
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31. Fermat, At Last

Fix a prime number 4, and let E be an elliptic curve over Q. For a prime p it is possible
to decide whether or not E has good reduction at p purely by considering the action of
G = Gal(Qal/Q) on the modules E(Qal)@n , for all n ≥ 1.

LetM be a finite abelian group, and let ρ : G→ Aut(M) be a continuous homomorphism
(discrete topology on Aut(M)). The kernelH of ρ is an open subgroup of G, and therefore its
fixed field QalH is a finite extension of Q. We say that ρ is unramified at p if p is unramified
in QalH . With this terminology, we can now state a converse to Proposition 30.1.

Theorem 31.1. Let 4 be a prime. The elliptic curve E has good reduction at p if and only
if the representation of G on E(Qal)@n is unramified for all n.

The proof makes use of the theory of Néron models.

There is a similar criterion for p = 4.

Theorem 31.2. Let 4 be a prime. The elliptic curve E has good reduction at 4 if and only
if the representation of G on E@n is flat for all n.

For the experts, the representation of G on E(Qal)@n is flat if there is a finite flat group
scheme H over Z@ such that H(Qal

@ ) ≈ E(Qal
@ )@n as G-modules. Some authors say “finite” or

“crystalline” instead of flat.

These criteria show that it is possible to detect whether E has bad reduction at p, and
hence whether p divides the conductor of E, from knowing how G acts on E(Qal)@n for all
n—it may not be possible to detect bad reduction simply by looking at E(Qal)@ for example.

Recall that Serre conjectured that every odd irreducible representation ρ : G → GL2(F@)
is modular, i.e., that there exists an f =

∑
c(n)qn ∈ S2k(Γ0(N)), some k and N , such that

Tr(ρ(Fp)) = c(n) mod 4

whenever ρ is unramified at p.

Conjecture 31.3 (Refined Serre conjecture). Every odd irreducible representation ρ :
G → GL2(F@) is modular for a specific k and N . For example, a prime p �= 4 divides N if
and only if ρ is ramified at p, and 4 divides N if and only if ρ is not flat.

Theorem 31.4 (Ribet and others). If ρ : G→ GL2(F@) is modular, then it is possible to
choose the cusp form to have the weight 2k and level N predicted by Serre.

This proof is difficult.

Now let E be the curve defined in (26.22) corresponding to a solution to X@+Y @ = Z@, 4 >
3. It is not hard to verify, using nontrivial facts about elliptic curves, that the representation
ρ0 of G on E(Qal)@ is irreducible. Moreover, that it unramified for p �= 2, 4, and that it is flat
for p = 4. The last statement follows from the facts that E has at worst nodal reduction at
p, and if it does have bad reduction at p, then p@|∆.

Now

E modular =⇒ ρ0 modular
Ribet
=⇒ ρ0 modular for a cusp form of weight 2, level 2.

But X0(N) has genus 0, and so there is no such cusp form. Wiles’s theorem proves that E
doesn’t exist.
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Of the growing number of sources attempting to explain Wiles’s theorem, I’ll cite just
three.

Ribet: Bull AMS, 32.4, 375–402. This is reliable, easy to read, and contains a great list
of references.

Murty, Kumar (Ed.). Seminar on Fermat’s last theorem, Canadian Math. Soc.. This
was mostly written before Wiles found the correct proof, but nevertheless gives much of the
background required for the proof.

Darmon, Diamond, Taylor. Fermat’s Last Theorem. Contains the most thorough intro-
duction to the proof. A preliminary version was published in: Current Developments in
Mathematics, 1995.
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